
www.renesas.com

Rev.6.00
Revision date: Jan. 04, 2006

Renesas Microcomputer Development Environment System

HI7000/4 Series
(HI7000/4 V.2.02, HI7700/4 V.2.02, and HI7750/4 V.2.02)

User’s Manual

REJ10B0060-0600

Rev.6.00
REJ10B0060-0600

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

Rev.6.00
REJ10B0060-0600

1. TRON is an acronym of “The Realtime Operating system Nucleus”, ITRON is an acronym of the

“Industrial TRON”, and µITRON is an acronym of the “Micro Industrial TRON”.
2. TRON, ITRON, and µITRON are the names of computer specifications and do not indicate a specific

group of the commodity or the commodity.
3. The µITRON4.0 specification is open realtime-kernel specification defined by the TRON association.

The specification of µITRON4.0 can be downloaded from the TRON association homepage
(http://www.assoc.tron.org).

4. The copyright of the µITRON specification belongs to the TRON association.
5. Microsoft® Windows® 98, Microsoft® Windows® Millennium Edition (Windows® Me) operating

system, Microsoft® Windows NT® operating system, Microsoft® Windows® 2000 operating system,
and Microsoft® Windows® XP operating system are registered trademarks of Microsoft Corporation in
the United States and/or other countries.

6. SuperHTM is a trademark of Renesas Technology Corp.
7 All other product names are trademarks or registered trademarks of the respective holders.

Rev.6.00 i
REJ10B0060-0600

Preface
This manual describes how to configure systems using the HI7000/4, HI7700/4, and HI7750/4
(hereinafter collectively referred to as the HI7000/4 series) embedded realtime multitasking
operating systems based on µITRON4.0 specifications.

Please read this manual and the related manuals listed below before using the HI7000/4 series to
fully understand the operating system.

This user's manual contains the following five sections and appendixes:

Section 1 Introduction to HI7000/4 series: general description of HI7000/4 series systems
Section 2 Kernel: overview of HI7000/4 series kernel functions.
Section 3 System calls: overview of HI7000/4 series kernel system calls.
Section 4 Applications: creating applications in C using sample programs
Section 5 System configuration method: configuring the system using the configurator
Appendixes List of service call function codes, error references, user and kernel work area

calculations, timer drivers, optional functions of HI7700/4 (optimized timer driver
and DSP standby control function), note on FPU, and modified functions in the
new version of the product.

The other relevant manuals are listed below:

• Release Notes provided for the product

• Manuals provided for the SuperH™ RISC engine C/C++ compiler package

• The hardware manual and programming manual of the SuperH™ microcomputer in use

Renesas Technology Homepage:

Various support information is available on the Renesas Technology homepage:

http://www.renesas.com/en/tools/

Preface

Rev.6.00 ii
REJ10B0060-0600

Abbreviations of products

Product Name Description

HI7000/4 series Abbreviation of HI7000/4, HI7700/4, and HI7750/4

DX Abbreviation of Debugging Extension

HEW Abbreviation of High-performance Embedded Workshop, which is an
integrated development tool.

Symbols used in this manual have the following meanings:

H' and D': For hexadecimal integers, prefix H' is attached. For decimal integers,
 prefix H' is attached. If no prefix is attached, a decimal integer is
 assumed.
nnnn: Bold-faced-italic nnnn is the CPU name used for the sample file
 name.
 Example: The timer driver file name is nnnn_tmrdrv.c in this
 manual, but the actual timer driver file for SH7708 is 7708_tmrdrv.c.
??? ??? is used for the file name in the HI7700/4 and HI7750/4. For big
 endian and little endian, big and little are used instead of ???,
 respectively.
CFG_MAXTSKID: A variable name beginning with CGF_ is specified for the
 configurator by the user to use the configurator. For details, refer to
 section 5.4.6, Configurator Settings, and the configurator on-line
 help.

Rev.6.00 i
REJ10B0060-0600

Contents
Section 1 Introduction ...1

1.1 Overview ...1
1.2 Features ...1
1.3 Operating Environment ...3
1.4 Installation...3
1.5 Target Product of This Manual..4

Section 2 Kernel ...5
2.1 Overview ...5
2.2 Functions ...5
2.3 Processing Units and Precedence ..6
2.4 System State ..7

2.4.1 Task Context State and Non-Task Context State .. 8
2.4.2 Dispatch-Disabled State/Dispatch-Enabled State... 8
2.4.3 CPU-Locked State/CPU-Unlocked State ... 9

2.5 Objects...9
2.6 Tasks ...9

2.6.1 Task State and Transition ... 11
2.6.2 Task Creation ... 13
2.6.3 Task Initiation... 13
2.6.4 Task Scheduling ... 14
2.6.5 Task Termination and Deletion... 15
2.6.6 Task Stack .. 15
2.6.7 Shared Stack Function.. 16
2.6.8 Task Execution Mode... 18
2.6.9 Exclusive Control... 18
2.6.10 Task Event Flags .. 19

2.7 Task Exception Processing..20
2.8 Semaphore...22
2.9 Event Flag ...24
2.10 Data Queue..26
2.11 Mailbox ...28
2.12 Mutex ..30
2.13 Message Buffer ...32
2.14 Fixed-Size Memory Pool...35
2.15 Variable-Size Memory Pool ..37

2.15.1 Overview.. 37
2.15.2 Controlling Fragmentation of Free Space .. 40
2.15.3 Management of Variable-Size Memory Pool ... 42

2.16 Time Management...43
2.16.1 Cyclic Handler ... 44
2.16.2 Alarm Handler.. 46
2.16.3 Overrun Handler... 47
2.16.4 Notes on Time Management .. 48

2.17 System State Management ..49
2.17.1 System Down ... 49
2.17.2 Service Call Trace Function ... 50

Contents

Rev.6.00 ii
REJ10B0060-0600

2.18 Interrupt Management and System Configuration Management 52
2.18.1 Resetting the CPU and Initiating the Kernel... 53
2.18.2 Interrupt Handlers... 54
2.18.3 Disabling Interrupts.. 55
2.18.4 Kernel Interrupt Mask Level (CFG_KNLMSKLVL): .. 57
2.18.5 CPU Exception... 58

2.19 Service Call Management ... 59
2.20 Cache Support (only for HI7700/4 and HI7750/4) ... 60
2.21 Kernel Idling ... 62
2.22 Pre-fetch Function (only for HI7700/4 and HI7750/4) ... 62
2.23 Optimized Timer Driver (only for HI7700/4) ... 62
2.24 DSP Standby Control Function (only for HI7700/4) .. 62

Section 3 Service Calls ...63
3.1 Overview... 63
3.2 Service Call Interface.. 64

3.2.1 C Language API ... 64
3.2.2 Assembly Language API .. 66
3.2.3 Guarantee of Register Contents after Issuing Service Call ... 67
3.2.4 Return Value of Service Call and Error Code... 69
3.2.5 System State and Service Calls... 69
3.2.6 Service Calls not in the μITRON4.0 Specification... 72

3.3 Service Call Description Form.. 73
3.4 Task Management ... 74

3.4.1 Create Task ... 76
3.4.2 Delete Task (del_tsk) .. 80
3.4.3 Initiate Task (act_tsk, iact_tsk) ... 81
3.4.4 Cancel Task Initiation Request (can_act, ican_act) .. 82
3.4.5 Start Task (Start Code Specified) (sta_tsk, ista_tsk) ... 83
3.4.6 Exit Current Task, Exit and Delete Current Task (ext_tsk), (exd_tsk) 84
3.4.7 Terminate Task (ter_tsk) ... 86
3.4.8 Change Task Priority (chg_pri, ichg_pri) ... 87
3.4.9 Refer to Task Priority (get_pri, iget_pri) .. 88
3.4.10 Refer to Task State (ref_tsk, iref_tsk) ... 89
3.4.11 Refer to Task State (Simple Version) (ref_tst, iref_tst)... 93
3.4.12 Change Task Execution Mode (vchg_tmd)... 95

3.5 Task Synchronization.. 96
3.5.1 Sleep Task (slp_tsk, tslp_tsk) ... 98
3.5.2 Wakeup Task (wup_tsk, iwup_tsk) ... 99
3.5.3 Cancel Wakeup Task (can_wup, ican_wup) ... 100
3.5.4 Release WAITING State Forcibly (rel_wai, irel_wai) .. 101
3.5.5 Suspend Task (sus_tsk, isus_tsk).. 102
3.5.6 Resume Task Force, Task to Resume (rsm_tsk, irsm_tsk, frsm_tsk, ifrsm_tsk) 103
3.5.7 Delay Task (dly_tsk)... 104
3.5.8 Set Task Event Flag (vset_tfl, ivset_tfl).. 105
3.5.9 Clear Task Event Flag (vclr_tfl, ivclr_tfl)... 106
3.5.10 Wait Task Event Flag (vwai_tfl, vpol_tfl, vtwai_tfl) .. 107

3.6 Task Exception Processing Functions... 109
3.6.1 Define Task Exception Processing Routine (def_tex, idef_tex)...................................... 111
3.6.2 Request Task Exception Processing (ras_tex, iras_tex) .. 113
3.6.3 Disable Task Exception Processing (dis_tex) ... 114
3.6.4 Enable Task Exception Processing (ena_tex) ... 115
3.6.5 Refer To Task Exception Processing Disabled State (sns_tex) 116

Contents

Rev.6.00 iii
REJ10B0060-0600

3.6.6 Refer to Task Exception Processing State (ref_tex, iref_tex) ... 117
3.7 Synchronization and Communication (Semaphore) ..118

3.7.1 Create Semaphore .. 119
3.7.2 Delete Semaphore (del_sem).. 121
3.7.3 Returns Semaphore Resource (sig_sem, isig_sem) .. 122
3.7.4 Wait on Semaphore (wai_sem, pol_sem, ipol_sem, twai_sem)...................................... 123
3.7.5 Refer to Semaphore State (ref_sem, iref_sem)... 125

3.8 Synchronization and Communication (Event Flag) ..126
3.8.1 Create Event Flag... 128
3.8.2 Delete Event Flag (del_flg) .. 130
3.8.3 Set Event Flag (set_flg, iset_flg) .. 131
3.8.4 Clear Event Flag (clr_flg, iclr_flg) ... 132
3.8.5 Wait for Event Flag Setting (wai_flg, pol_flg, ipol_flg, twai_flg).................................. 133
3.8.6 Refer to Event Flag State (ref_flg, iref_flg) ... 135

3.9 Synchronization and Communication (Data Queue) ...136
3.9.1 Create Data Queue ... 138
3.9.2 Delete Data Queue (del_dtq).. 140
3.9.3 Send Data to Data Queue (snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq,

ifsnd_dtq) ... 141
3.9.4 Receive Data from Data Queue (rcv_dtq, prcv_dtq, trcv_dtq) 143
3.9.5 Refer to Data Queue State (ref_dtq, iref_dtq) .. 145

3.10 Synchronization and Communication (Mailbox) ..146
3.10.1 Create Mailbox... 147
3.10.2 Delete Mailbox (del_mbx) ... 149
3.10.3 Send Message to Mailbox (snd_mbx, isnd_mbx)... 150
3.10.4 Receive Message from Mailbox (rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx) 152
3.10.5 Refer to Mailbox State (ref_mbx, iref_mbx).. 154

3.11 Synchronization and Communication (Mutex) ...156
3.11.1 Create Mutex (cre_mtx) (acre_mtx: Assign Mutex ID Automatically) 157
3.11.2 Delete Mutex (del_mtx) ... 159
3.11.3 Lock Mutex (loc_mtx, ploc_mtx, tloc_mtx)... 160
3.11.4 Unlock Mutex (unl_mtx).. 162
3.11.5 Refer to Mutex State (ref_mtx) .. 163

3.12 Extended Synchronization and Communication (Message Buffer)...........................164
3.12.1 Create Message Buffer ... 166
3.12.2 Delete Message Buffer (del_mbf) .. 169
3.12.3 Send Message to Message Buffer (snd_mbf, psnd_mbf, ipsnd_mbf, tsnd_mbf)............ 170
3.12.4 Receive Message from Message Buffer (rcv_mbf, prcv_mbf, trcv_mbf)....................... 172
3.12.5 Refer to Message Buffer State (ref_mbf, iref_mbf).. 174

3.13 Memory Pool Management (Fixed-Size Memory Pool) ...175
3.13.1 Create Fixed-Size Memory Pool .. 176
3.13.2 Delete Fixed-Size Memory Pool (del_mpf) ... 179
3.13.3 Get Fixed-Size Memory Block (get_mpf, pget_mpf, ipget_mpf, tget_mpf) 180
3.13.4 Release Fixed-Size Memory Block (rel_mpf, irel_mpf) .. 182
3.13.5 Refer to Fixed-Size Memory Pool State (ref_mpf, iref_mpf)... 183

3.14 Memory Pool Management (Variable-Size Memory Pool).......................................184
3.14.1 Create Variable-Size Memory Pool .. 186
3.14.2 Delete Variable-Size Memory Pool (del_mpl) ... 190
3.14.3 Get Variable-Size Memory Block (get_mpl, pget_mpl, ipget_mpl, tget_mpl) 191
3.14.4 Release Variable-Size Memory Block (rel_mpl, irel_mpl)... 193
3.14.5 Refer to Variable-Size Memory Pool State (ref_mpl, iref_mpl)..................................... 194

3.15 Time Management (System Clock)...195
3.15.1 Set System Clock (set_tim, iset_tim) ... 197
3.15.2 Get System Clock (get_tim, iget_tim).. 198

Contents

Rev.6.00 iv
REJ10B0060-0600

3.15.3 Supply Time Tick (isig_tim)... 199
3.16 Time Management (Cyclic Handler)... 200

3.16.1 Create Cyclic Handler .. 201
3.16.2 Delete Cyclic Handler (del_cyc) .. 203
3.16.3 Start Cyclic Handler (sta_cyc, ista_cyc)... 204
3.16.4 Stop Cyclic Handler (stp_cyc, istp_cyc)... 205
3.16.5 Refer to Cyclic Handler State (ref_cyc, iref_cyc)... 206

3.17 Time Management (Alarm Handler)... 207
3.17.1 Create Alarm Handler... 208
3.17.2 Delete Alarm Handler (del_alm) .. 210
3.17.3 Start Alarm Handler (sta_alm, ista_alm) .. 211
3.17.4 Stop Alarm Handler (stp_alm, istp_alm).. 212
3.17.5 Refer to Alarm Handler State (ref_alm, iref_alm).. 213

3.18 Time Management (Overrun Handler).. 214
3.18.1 Define Overrun Handler (def_ovr) ... 215
3.18.2 Start Overrun Handler (sta_ovr, ista_ovr)... 216
3.18.3 Stop Overrun Handler Operation (stp_ovr, istp_ovr).. 217
3.18.4 Refer to Overrun Handler State (ref_ovr, iref_ovr) .. 218

3.19 System State Management .. 219
3.19.1 Rotate Ready Queue (rot_rdq, irot_rdq) ... 220
3.19.2 Get Task ID in RUNNING State (get_tid, iget_tid).. 221
3.19.3 Lock CPU (loc_cpu, iloc_cpu) ... 222
3.19.4 Unlock CPU (unl_cpu, iunl_cpu) ... 224
3.19.5 Disable Dispatch (dis_dsp)... 225
3.19.6 Enable Dispatch (ena_dsp) ... 226
3.19.7 Refer to Context (sns_ctx).. 227
3.19.8 Refer to CPU-Locked State (sns_loc)... 228
3.19.9 Refer to Dispatch-disabled State (sns_dsp) .. 229
3.19.10 Refer to Dispatch-Pended State (sns_dpn) ... 230
3.19.11 Start Kernel (vsta_knl, ivsta_knl) ... 231
3.19.12 System Down (vsys_dwn, ivsys_dwn) ... 232
3.19.13 Acquire Trace Information (vget_trc, ivget_trc)... 233
3.19.14 Acquire Start of Interrupt Handler as Trace Information (ivbgn_int) 234
3.19.15 Acquire End of Interrupt Handler as Trace Information (ivend_int) 235

3.20 Interrupt Management... 236
3.20.1 Define Interrupt Handler (def_inh, idef_inh).. 237
3.20.2 Change Interrupt Mask (chg_ims, ichg_ims).. 240
3.20.3 Refer to Interrupt Mask (get_ims, iget_ims)... 241

3.21 Service Call Management ... 242
3.21.1 Define Extended Service Call (def_svc, idef_svc) ... 243
3.21.2 Call Service Call (cal_svc, ical_svc) .. 244

3.22 System Configuration Management.. 245
3.22.1 Define CPU Exception Handler (def_exc, idef_exc) .. 246
3.22.2 Define CPU Exception (TRAPA Instruction Exception) Handler (vdef_trp,

ivdef_trp) .. 248
3.22.3 Refer to Configuration Information (ref_cfg, iref_cfg) .. 250
3.22.4 Refer to Version Information (ref_ver, iref_ver)... 252

3.23 Cache Support Function (HI7700/4: for SH-3 and SH3-DSP) 254
3.23.1 Initialize Cache (vini_cac, ivini_cac) ... 256
3.23.2 Clear Cache (vclr_cac, ivclr_cac)... 258
3.23.3 Flush Cache (vfls_cac, ivfls_cac) ... 259
3.23.4 Invalidate Cache (vinv_cac, ivinv_cac) .. 260

3.24 Cache Support Function (HI7750/4: for SH-4) ... 261
3.24.1 Initialize Cache (vini_cac, ivini_cac) ... 263

Contents

Rev.6.00 v
REJ10B0060-0600

3.24.2 Clear Operand Cache (vclr_cac, ivclr_cac) .. 264
3.24.3 Flush Operand Cache (vfls_cac, ivfls_cac) .. 265
3.24.4 Invalidate Operand Cache (vinv_cac, ivinv_cac).. 266

3.25 Cache Support Function (HI7700/4: for SH4AL-DSP without Extended
Function, HI7750/4: for SH-4A without Extended Function)267

3.25.1 Initialize Cache (vini_cac, ivini_cac) ... 269
3.25.2 Clear Instruction/Operand Cache (vclr_cac, ivclr_cac).. 271
3.25.3 Flush Operand Cache (vfls_cac, ivfls_cac) .. 273
3.25.4 Invalidate Instruction/Operand Cache (vinv_cac, ivinv_cac) ... 275

3.26 Cache Support Function (HI7700/4: for SH4AL-DSP with Extended
Function, HI7750/4: for SH-4A with Extended Function) ..277

3.26.1 Initialize Cache (vini_cac, ivini_cac) ... 279
3.26.2 Clear Instruction/Operand Cache (vclr_cac, ivclr_cac).. 282
3.26.3 Flush Operand Cache (vfls_cac, ivfls_cac) .. 284
3.26.4 Invalidate Instruction/Operand Cache (vinv_cac, ivinv_cac) ... 286

Section 4 Application Program Creation...289
4.1 Header Files...289

4.1.1 Header Files for C/C++ Language ... 289
4.1.2 Header Files for Assembly Language .. 292

4.2 Handling the CPU Resources ..293
4.2.1 SR Register .. 293
4.2.2 Cache Lock Function (SH-3, SH3-DSP).. 294
4.2.3 VBR Register ... 295
4.2.4 MMU (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A)... 295
4.2.5 Acceptance of NMI while SR.BL = 1 (SH-3, SH3-DSP, SH4AL-DSP, SH-4,

SH-4A)... 295
4.2.6 Nesting the Interrupts (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A) 295
4.2.7 32-Bit Address Extension Mode (SH-4A).. 295
4.2.8 TBR Register (SH-2A, SH2A-FPU) .. 295
4.2.9 Register Banks (SH-2A, SH2A-FPU) .. 296

4.3 Using SH2A-FPU, SH-4, or SH-4A..296
4.4 System Reserve ...297

4.4.1 Reserved Name .. 297
4.4.2 Reserved TRAP (Only in HI7000/4) .. 297

4.5 Tasks ...297
4.6 Task Exception Processing Routines...302
4.7 Extended Service Call Routines ..306
4.8 Interrupt Handlers..307

4.8.1 Normal Interrupt Handler... 307
4.8.2 Direct Interrupt Handler (HI7000/4) .. 312

4.9 CPU Exception Handler (Including TRAPA Instruction Exception)323
4.10 Time Event Handlers and Initialization Routine ...329
4.11 CPU Initialization Routines...335

4.11.1 Creating CPU Initialization Routines in C language.. 335
4.11.2 Defining CPU Initialization Routines in HI7000/4 .. 335
4.11.3 Defining CPU Initialization Routines in HI7700/4 and HI7750/4.................................. 336

4.12 System Down Routines ...336
4.13 Using the DSP in Programs (for HI7000/4 and HI7700/4 only)337

4.13.1 Initializing DSR ... 337
4.13.2 Using DSP in Handlers .. 338

Contents

Rev.6.00 vi
REJ10B0060-0600

Section 5 Configuration ...341
5.1 Read First .. 341

5.1.1 Whole Linkage and Separate Linkage.. 341
5.2 Folder Structure .. 344

5.2.1 hihead Folder.. 344
5.2.2 hisys Folder .. 344
5.2.3 hilib Folder ... 344
5.2.4 knl Folder ... 344
5.2.5 samples\shnnnn Folder ... 344

5.3 Operating Procedure ... 349
5.4 Configurator .. 350

5.4.1 Overview .. 350
5.4.2 Configurator Construction.. 351
5.4.3 File Operation... 352
5.4.4 Configuration Files... 352
5.4.5 Separate Linkage .. 354
5.4.6 Configurator Settings.. 355

5.5 When Optimized Timer Driver is Used (HI7700/4) ... 364
5.6 When DSP Standby Control Function is Used (HI7700/4)....................................... 364
5.7 When Cache Support Function is Used on SH4AL-DSP (HI7700/4) or SH-

4A (HI7750/4)... 364
5.8 HEW Workspace and Projects .. 365
5.9 Kernel Libraries .. 367

5.9.1 HI7000/4... 367
5.9.2 HI7700/4... 367
5.9.3 HI7750/4... 370

5.10 Section Configuration ... 371
5.11 Settings Common to All Projects .. 373

5.11.1 CPU Options for the Compiler and Assembler... 373
5.11.2 GBR Option of Compiler (Compiler Package V.7.1 or Later).. 373
5.11.3 PACK Option and #pragma pack of Compiler (Compiler Package V.8 or Later) 374
5.11.4 Include Directory for Compiler and Assembler.. 374
5.11.5 When SH2A-FPU or SH-4 or SH-4A is Used .. 374
5.11.6 TBR Option of Compiler (Compiler Package V.9 or Later) ... 374

5.12 Build for Whole Linkage (mix)... 375
5.12.1 Adding Files to a Project .. 375
5.12.2 Defining Endian.. 375
5.12.3 Setting Optimized Linkage Editor Options... 376
5.12.4 Executing a Build ... 379

5.13 Build for Separate Linkage: Kernel Side (def).. 380
5.13.1 Adding Files to a Project .. 380
5.13.2 Defining Endian (HI7700/4 and HI7750/4) .. 380
5.13.3 Setting Optimized Linkage Editor Options... 381
5.13.4 Executing a Build ... 384

5.14 Build at Separate Linkage: Kernel Environment Side (cfg)...................................... 385
5.14.1 Adding Files to a Project .. 385
5.14.2 Defining Endian (HI7700/4 and HI7750/4) .. 385
5.14.3 Setting Optimized Linkage Editor Options... 386
5.14.4 Executing a Build ... 388

5.15 Application Load Module Creation .. 388

Contents

Rev.6.00 vii
REJ10B0060-0600

Appendix A Service Call List ...389
Appendix B Error List..401

B.1 Service Call Error Code List ...401
B.2 Information during System Down ...402
B.3 Error during Compiling ...403

B.3.1 Error when Files are for a Different HI7000/4 Series... 403
B.3.2 Errors to Do with the Optimized Timer Driver (HI7700/4).. 403
B.3.3 Errors to Do with the DSP-Standby Control Function (HI7700/4) 404

Appendix C Calculation of Work Area Size...405
C.1 Work Areas ...405
C.2 Stack Types ...406
C.3 Stack Size Calculation Procedure..407
C.4 Calculation of Stack Size for Each Function...408
C.5 Stack Size Considering Programming Nesting..409
C.6 Task Stacks..411

C.6.1 Stack Size Used by Each Task.. 411
C.6.2 Stack Area Acquisition... 412

C.7 Interrupt Handler Stacks..413
C.7.1 Stack Size Used by an Interrupt Handler.. 413
C.7.2 Stack Area Allocation .. 414

C.8 Stack Size Used by a Time Event Handler and Timer Interrupt Routine415
C.9 Initialization Routine Stacks..417
C.10 Timer Initialization Routine Stack ..418

Appendix D Timer Driver ..419
D.1 Overview ...419
D.2 Standard Timer Driver...419

D.2.1 Installing the Time Management Function... 419
D.2.2 Sample Timer Driver.. 421

Appendix E Optimized Timer Driver (HI7700/4) ..423
E.1 Overview ...423
E.2 Operation...423
E.3 Applicable MCUs..425
E.4 Hardware Initialization..425
E.5 Differences with the Standard Timer Driver ...425
E.6 Ways to Include Optimized Timer Driver ...426

E.6.1 Overview.. 426
E.6.2 Creating the kernel_def_opttmr_set.h Definition File .. 426
E.6.3 Notes on the Configurator .. 427
E.6.4 Modifying kernel_sys.h.. 428

E.7 Kernel Libraries to be Used...428
Appendix F DSP Standby Control (HI7700/4)...429

F.1 Overview ...429
F.2 Applicable MCUs..431
F.3 Module-Standby State when Initiating Programs..431

Contents

Rev.6.00 viii
REJ10B0060-0600

F.4 Service Call for Changing the TA_COP0 Attribute (vchg_cop)............................... 432
F.5 Ways to Include DSP Standby Control Function.. 433

F.5.1 Overview .. 433
F.5.2 Creating the kernel_def_dspstby_set.h Definition File... 433
F.5.3 Modifying kernel_sys.h.. 435

F.6 Kernel Libraries to be Used .. 435
F.7 Notes ... 435

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A ..437
G.1 Task and Task Exception Processing Routine .. 437

G.1.1 Initialization of FPSCR .. 437
G.1.2 Attributes TA_COP1 and TA_COP2 .. 438

G.2 Non-Task Context (Normal Interrupt Handler, Direct Interrupt Handler, CPU
Exception Handler, Time Event Handler, Initialization Routine) 438

G.2.1 Overview .. 438
G.2.2 SH-4, SH-4A .. 439
G.2.3 SH2A-FPU ... 441

G.3 Extended Service Call Routine ... 441
G.3.1 Compiler Options ... 441
G.3.2 Called from Task Context ... 442
G.3.3 Called from Non-Task Context... 442

G.4 Information for Reference... 443
G.4.1 States on the Initiation of Tasks and Handlers.. 443
G.4.2 FPSCR Structure .. 444
G.4.3 Handling by the Compiler .. 445

Appendix H New Functions of HI7000/4 V.2 ..447
H.1 Support of SH-2A and SH2A-FPU ... 447

H.1.1 FPU (SH2A-FPU) (V.2.00 Release 00) .. 447
H.1.2 TBR Register (V.2.00 Release 00).. 447
H.1.3 Register Banks (V.2.00 Release 00, V.2.01 Release 00 and V.2.02 Release 00) 448

H.2 Specifying Address of Task Stack, Fixed-Size Memory Pool, and Variable-
Size Memory Pool (V.2.00 Release 00) .. 448

H.3 Management Method of Fixed-Size Memory Pool (V.2.00 Release 00) 449
H.4 Direct Interrupt Handler (V.2.00 Release 00 and V.2.02 Release 00) 450
H.5 Macros for Calculating Size (V.2.00 Release 00) ... 450
H.6 Extension of Maximum Vector Number (V.2.00 Release 00) 450
H.7 ID Name (V.2.00 Release 00) ... 451
H.8 Support of Little Endian in SH-2 (V.2.00 Release 01).. 451
H.9 Improvement of Variable-Size Memory Pool (V.2.01 Release 00) 451
H.10 Initial Value of DSR (V.2.01 Release 00)... 452
H.11 Initial Value of SR in Task Exception Processing Routine (V.2.01 Release

00) ... 452
H.12 Handling of Vector Numbers 16 to 31 (V.2.01 Release 00) 452
H.13 Lifting of Restriction concerning Structure Alignment (V.2.01 Release 00)............ 453
H.14 [Open the file used last time] Command for the Configurator (V.2.02 Release

00) ... 453
Appendix I New Functions of HI7700/4 V.2 ..455

I.1 Support of SH4AL-DSP (with Extended Function) (V.2.01 Release 00) 455

Contents

Rev.6.00 ix
REJ10B0060-0600

I.2 Specifying Address of Task Stack, Fixed-Size Memory Pool, and Variable-
Size Memory Pool (V.2.01 Release 00) ..455

I.3 Management Method of Fixed-Size Memory Pool (V.2.01 Release 00)455
I.4 Improvement of Variable-Size Memory Pool (V.2.01 Release 00)...........................457
I.5 Macros for Calculating Size (V.2.01 Release 00) ...458
I.6 Initial Value of DSR (V.2.01 Release 00) ...458
I.7 Initial Value of SR in Task Exception Processing Routine (V.2.01 Release

00) ...459
I.8 Extension of Maximum Exception Code (CFG_MAXVCTNO) (V.2.01

Release 00) ..459
I.9 Handling of TRAPA #16 to #31 (V.2.01 Release 00) ...459
I.10 Release of Restriction concerning Structure Alignment (V.2.01 Release 00)..........459
I.11 ID Name (V.2.01 Release 00) ...460
I.12 [Open the file used last time] Command for the Configurator (V.2.02 Release

00) ...460
Appendix J New Functions of HI7750/4 V.2..461

J.1 Support of SH-4A (with Extended Function) (V.2.01 Release 00)461
J.2 Specifying Address of Task Stack, Fixed-Size Memory Pool, and Variable-

Size Memory Pool (V.2.01 Release 00) ..461
J.3 Management Method of Fixed-Size Memory Pool (V.2.01 Release 00)461
J.4 Improvement of Variable-Size Memory Pool (V.2.01 Release 00)...........................463
J.5 Macros for Calculating Size (V.2.01 Release 00) ...464
J.6 Initial Value of SR in Task Exception Processing Routine (V.2.01 Release

00 or Later)..464
J.7 Extension of Maximum Exception Code (CFG_MAXVCTNO) (V.2.01

Release 00) ..464
J.8 Handling of TRAPA #16 to #31 (V.2.01 Release 00) ...465
J.9 Release of Restriction concerning Structure Alignment (V.2.01 Release 00)...........465
J.10 ID Name (V.2.01 Release 00) ...465
J.11 [Open the file used last time] Command for the Configurator (V.2.02 Release

00) ...465

Rev.6.00 1
REJ10B0060-0600

Section 1 Introduction

1.1 Overview
Operating systems (OSs) for system development have grown with the ever-increasing use of
microcomputer systems in a wide variety of fields. In particular, realtime OSs have gained wide
acceptance for use in industrial measurement and control systems.

1.2 Features
The HI7000/4 series kernel is based on the µITRON4.0 specifications. Features of the kernel are
outlined below.

• Comprehensive functions for realtime and multitasking processing

• Priority-based task scheduling

• Task management, including the creation, deletion, initiation, and termination of tasks

• Task synchronization, including suspension and resumption of tasks, and task event flags

• Task exception processing functions, including the definition, request, enabling, and
disabling of task exception processing

• Extended inter-task synchronization and communication using semaphores, event flags, data
queues, and mailboxes

• Inter-task synchronization and communication using mutexes and message buffers

• Memory pool management, including control over the allocation and return of memory
blocks

• Control over timing, such as setting and referring to the system clock, and controlling the
cyclic handler, alarm handler, and overrun handler

• System management

• Interrupt management

• Service call management, including the definition and issue

• System configuration management, including the definition of CPU exception handlers

• Support of DSP and FPU (note that the HI7000/4 does not support the FPU in the SH-2E
processor)

• Cache support function (only for HI7700/4 and HI7750/4)

• Optimized timer driver and DSP standby control function for low-power consumption (only
for HI7700/4)

• A compact kernel with optional selection of kernel functions

The size of the kernel program and size of its work area are reduced to minimize the ROM
and RAM size required by the user system. The kernel optimized for the user system can be
configured by selecting the kernel functions to be used by the user system.

• Sample programs

The following sample source programs are provided. By modifying the programs as
required, the user system can easily be created and customized for the user.

Section1 Introduction

Rev.6.00 2
REJ10B0060-0600

⎯ System down routine
⎯ Timer driver for on-chip timers of SuperH™ microcomputer series
⎯ CPU initialization routine
⎯ Section initialization and definition file

• Configurator

The configurator is supported to ease kernel configuration.

• Debugging extension (option)

The debugging extension which adds a multitasking debugging function to HEW3 or later
versions of HEW is prepared. The debugging extension supports the following functions.

• Refer to the status of objects, such as a task
• Operate to objects, such as starting task, or set event flag
• Display service call history

The debugging extension can be downloaded free of charge from our homepage.

Section1 Introduction

Rev.6.00 3
REJ10B0060-0600

1.3 Operating Environment
The operating environment is shown in table 1.1.

Table 1.1 Operating Environment

Product
Name Files Included Operating Environment

HI7000/4 Kernel All SuperH™ microcomputers incorporating SH-1, SH-2,
SH2-DSP, SH-2A, or SH2A-FPU

 Sample program Some SuperH™ microcomputers incorporating SH-1, SH-2,
SH2-DSP, SH-2A, or SH2A-FPU

 Sample HEW
workspace and
project

HEW version 1.2 or later (SuperH™ RISC engine C/C++
compiler package version 6.0C or later)

 Configurator Windows® 98, Windows® Millennium Edition (Windows®
Me), WindowsNT® 4.0, Windows® 2000, and Windows® XP

HI7700/4 Kernel All SuperH™ microcomputers incorporating SH-3, SH3-
DSP, or SH4AL-DSP

 Sample program Some SuperH™ microcomputers incorporating SH-3, SH3-
DSP, or SH4AL-DSP

 Sample HEW
workspace and
project

HEW version 1.2 or later (SuperH™ RISC engine C/C++
compiler package version 6.0C or later)

 Configurator Windows® 98, Windows® Millennium Edition (Windows®
Me), WindowsNT® 4.0, Windows® 2000, and Windows® XP

HI7750/4 Kernel All SuperH™ microcomputers incorporating SH-4 or SH-4A

 Sample program Some SuperH™ microcomputers incorporating SH-4 or SH-
4A

 Sample HEW
workspace and
project

HEW version 1.2 or later (SuperH™ RISC engine C/C++
compiler package version 6.0C or later)

 Configurator Windows® 98, Windows® Millennium Edition (Windows®
Me), WindowsNT® 4.0, Windows® 2000, and Windows® XP

1.4 Installation
Refer to release notes attached to the product.

Section1 Introduction

Rev.6.00 4
REJ10B0060-0600

1.5 Target Product of This Manual
• HI7000/4: V.2.02 Release 00 or later

• HI7700/4: V.2.02 Release 00 or later

• HI7750/4: V.2.02 Release 00 or later

Rev.6.00 5
REJ10B0060-0600

Section 2 Kernel

2.1 Overview
The kernel, which is the nucleus of the operating system, enables realtime multitasking. It has
three major roles.

• Response to events

Recognizes events generated asynchronously, and immediately executes a task to process the
event.

• Task scheduling

Schedules task execution on a priority basis.

• Service call execution

Accepts various requests for processing (service calls) from tasks and performs the
appropriate processing.

2.2 Functions
An application program can issue service calls to almost any kernel function.

Task Management: When a task is executed, the CPU is allocated to the task. The kernel
controls the order of CPU allocation, and of the start and end of tasks. Multiple tasks can share
one stack by using the shared-stack function.

Task Synchronization Management: Performs basic synchronous processing for tasks, such as
suspension of task execution, resumption, and task event flag processing.

Synchronization and Communication Management: Uses event flags, semaphores, data
queues, and mailboxes for inter-task synchronization and communication.

Extended Synchronization and Communication Management: Uses mutex and message
buffers for inter-task synchronization and communication.

Memory Pool Management: Manages unused memory in the user system as a memory pool. A
task dynamically acquires blocks from or returns them to the memory pool. The size of the
memory pool can be fixed or variable.

Time Management: Manages time-related information for the system and monitors task
execution times for control purposes.

System State Management: Performs system state management functions, such as modifying
or referencing the context or system states.

Interrupt Management: Initiates the appropriate interrupt handlers in response to external
interrupts. The interrupt handler performs appropriate interrupt processing, and notifies tasks of
interrupts.

Service Call Management: Defines or calls an extended service call.

Section2 Kernel

Rev.6.00 6
REJ10B0060-0600

System Configuration Management: Performs system configuration management functions,
such as defining the CPU exception handlers and reading the kernel version number.

DSP/FPU Support: Supports the DSP and FPU in its multitasking environment. Each task can
use special registers to execute DSP/FPU instructions.

2.3 Processing Units and Precedence
An application program is executed in the following processing units.

Task: A task is a unit controlled by multitasking.

Task Exception Processing Routine: A task exception processing routine is executed when a
task exception processing is requested by a task in the ras_tex service call.

Interrupt Handler: An interrupt handler is executed when an interrupt occurs.

CPU Exception Handler: A CPU exception handler is executed when a CPU exception occurs.

Time Event Handler (Cyclic Handler, Alarm Handler, and Overrun Handler):
A time event handler is executed when a specified cycle or time has been reached.

Extended Service Call: An extended service call is used to call a module that is not linked.
When this extended service call is issued, the corresponding extended service call routine is
called.

Each processing unit is processed with the following precedence.

(1) Interrupt handlers, time event handlers and CPU exception handlers

(2) Dispatcher (part of kernel processing)

(3) Tasks

The dispatcher is a kernel processing that switches a task to be executed.

The precedence of an interrupt handler becomes higher when an interrupt level is higher.

The precedence of a time event handler is the same as a timer interrupt level
(CFG_TIMINTLVL).

The precedence of a CPU exception handler is higher than that of the processing where the CPU
exception occurred and of the dispatcher. The precedence of a CPU exception handler is also
lower than that of other processings which have the higher precedence than those where the
CPU exception occurred.

The precedence between tasks depends on the priority of these tasks.

The precedence of an extended service call routine is higher than that of the processing where
the extended service call was called. The precedence of an extended service call routine is also
lower than that of other processings which have the higher precedence than those where the
extended service call was called.

Section2 Kernel

Rev.6.00 7
REJ10B0060-0600

The precedence of a task's exception processing routine is higher than that of the task and lower
than that of other higher-level tasks.

When the following service calls are called, the precedence which does not apply above can be
temporarily generated:

(a) When dis_dsp is called, the precedence will be the middle of (1) and (2) above. The state
returns to former state by calling dis_dsp.

(b) When loc_cpu or iloc_cpu is called, the precedence will be the same as that of the
interrupt handler of which interrupt level is the same as CFG_KNLMSKLVL. The state
returns to former state by calling unl_cpu or iunl_cpu.

(c) While the interrupt mask level is changed to other than 0 by chg_ims, the precedence is
the same as an interrupt handler which has the same level.

2.4 System State
The system state is classified into the following orthogonal states.

• Task context state/non-task context state

• Dispatch-disabled state/dispatch-enabled state

• CPU-locked state/CPU-unlocked state

The system operations and available service calls are determined based on the above system
states.

Section2 Kernel

Rev.6.00 8
REJ10B0060-0600

2.4.1 Task Context State and Non-Task Context State

The system is executed in either task context state or non-task context state. The difference
between task and non-task context states is described in table 2.1.

Table 2.1 Task Context State and Non-Task Context State

Item Task Context State Non-Task Context State

Available service calls Service calls that can be called
from the task context

Service calls that can be called from
the task context

Task scheduling Refer to sections 2.4.2 and 2.4.3 Does not occur

The following processing is executed in non-task context.

• Interrupt handler

• CPU exception handler

• Time event handler (cyclic handler, alarm handler, and overrun handler)

• A part where the interrupt mask is changed to a value other than 0 by the chg_ims service
call

Note that extended service calls initiated in the above processing state are also executed in non-
task context.

2.4.2 Dispatch-Disabled State/Dispatch-Enabled State

The system is placed in either dispatch-disabled state or dispatch-enabled state. In dispatch-
disabled state, task scheduling is not allowed and service calls that place a task in the WAITING
state cannot be used.

Issuing the dis_dsp service call during task execution changes the system state to dispatch-
disabled state. Issuing the ena_dsp service call will return the system state to the dispatch-
enabled state. Issuing the sns_dsp service call will check whether the system state is in dispatch-
disabled state or not.

Section2 Kernel

Rev.6.00 9
REJ10B0060-0600

2.4.3 CPU-Locked State/CPU-Unlocked State

The system is placed in either CPU-locked state or CPU-Unlocked state. In CPU-locked state,
interrupts and task scheduling are not allowed. Note, however, that interrupts with interrupt
mask levels higher than that specified in the kernel mask level (CFG_KNLMSKLVL) in
configuration are allowed. In this state, service calls that place a task in the WAITING state
cannot be used.

Issuing the loc_cpu or iloc_cpu service call during task execution changes the system state to
CPU-locked state. Issuing an unl_cpu or iunl_cpu will return the system state to the CPU-
unlocked state. In addition, issuing the sns_loc service call will check whether the system state is
in CPU-locked state or not.

In the CPU-locked state, service calls than can be issued are restricted as described in 3.2.5,
System State and Service Calls.

2.5 Objects
Objects such as tasks and semaphores are manipulated by service calls. Objects are identified by
ID numbers or object numbers. The maximum number can be specified for almost all objects in
configuration.

2.6 Tasks
In a realtime multitasking system, the user prepares an application program in terms of a set of
tasks that can be processed independently and in parallel.

A task communicates with other tasks by using service calls. Such service calls can be used to
have the kernel process events that are asynchronously generated by external devices or by the
MCU.

Tables 2.2 and 2.3 list the service calls that operate tasks.

Section2 Kernel

Rev.6.00 10
REJ10B0060-0600

Table 2.2 Task-Management Service Calls

Service Call Description

cre_tsk, icre_tsk Creates task (using dynamic stack)

vscr_tsk, ivscr_tsk Creates task (using static stack)

acre_tsk, iacre_tsk Creates task (automatically assigns task ID)

del_tsk Deletes task

act_tsk, iact_tsk Starts task

can_act, ican_act Cancels start task request

sta_tsk, ista_tsk Starts task (specifies start task code)

ext_tsk; Exits current task

exd_tsk Exits current task and deletes it

ter_tsk Forcibly terminates a task

chg_pri, ichg_pri Changes task priority

get_pri, iget_pri Refers to task priority

ref_tsk, iref_tsk Refers to task state

ref_tst, iref_tst Refers to task state (simple version)

vchg_tmd Changes task execution mode

Table 2.3 Task Synchronization Service Calls

Service Call Description

slp_tsk Sleep task

tslp_tsk Sleep task with timeout

wup_tsk, iwup_tsk Wakeup task

can_wup, ican_wup Cancel wakeup task

rel_wai, irel_wai Release WAITING state forcibly

sus_tsk, isus_tsk Suspend task

rsm_tsk, irsm_tsk Resume task

frsm_tsk, ifrsm_tsk Resume task forcibly

dly_tsk Delay task

Section2 Kernel

Rev.6.00 11
REJ10B0060-0600

2.6.1 Task State and Transition

A task can be in any of the following seven states in the user system.

NON-EXISTENT State: A task has not been registered in the kernel and has been in a virtual
state.

DORMANT State: A task has been registered in the kernel but has not yet been initiated, or has
already been terminated.

READY (executable) State: An executable task is in the queue is waiting for CPU resource
allocation because another higher priority task is currently running.

RUNNING State: The task is currently running. The kernel puts the READY task with the
highest priority in the RUNNING state.

WAITING State: A task issues a service call such as tslp_tsk to put itself to sleep when it can
no longer continue execution. The task is released (awakened) from the WAITING (sleep) state
when the service call wup_tsk is issued, and it then makes the transition to the READY state.

SUSPENDED State: A task has been suspended by another task by sus_tsk.

WAITING-SUSPENDED State: This state is a combination of the WAITING state and
SUSPENDED state.

Section2 Kernel

Rev.6.00 12
REJ10B0060-0600

Figure 2.1 shows the task-state transition diagram.

NON-EXISTENT
(unregistered state)

DORMANT
(inactive state)

SUSPENDED
(forcible-wait state)r

WAITING-SUSPENDED
(double-wait state)

WAITING
(wait state)

RUNNING
(execution state)

READY
(executable state)

Wait release

Suspension
 (sus_tsk)

Suspension
 (sus_tsk)

Resumption
(rsm_tsk, frsm_tsk)

Initiation
(act_tsk, sta_tsk)

Forcible termination
(ter_tsk)

Exit and
deletion (exd_tsk)

Deletion
(del_tsk)

Exit (ext_tsk)

Creation
(cre_tsk)

CPU allocation

Waiting for CPU allocation

Resumption
(rsm_tsk,
 frsm_tsk)

Forcible
termination
(ter_tsk)

Wait

Wait
release

Forcible
termination
(ter_tsk)

Forcible
termination
(ter_tsk)

Figure 2.1 Task State Transition Diagram

Section2 Kernel

Rev.6.00 13
REJ10B0060-0600

2.6.2 Task Creation

Task creation means that a NON-EXISTENT task becomes DORMANT. The method of
creating a task differs depending on the stack type used by the task to be created. For details,
refer to section 0,

Task Stack. The methods of creating a task are shown in table 2.4.

Table 2.4 Task Creating Methods

 Stack Type Used by Created Task

Task Creating Method Static Stack Dynamic Stack
Stack Allocated by
Application

cre_tsk, acre_tsk service calls

vscr_tsk service call

Configurator

2.6.3 Task Initiation

A task is initiated when it moves from the DORMANT state to become READY. A task can be
initiated by one of two methods:

• By issuing the act_tsk or sta_tsk service calls for the target task

• By specifying TA_ACT as a task attribute when a task is created

The kernel performs the following processing at task initiation.

• Initialize the task base priority and current priority

• Clear the number of task wake-up requests

• Clear the number of nestings of task suspension requests

• Clear the pended task exception sources

• Set task exception processing to the disabled state

• Set the task event flag to 0

The following parameter is passed to the task.

(1) When TA_ACT attribute is specified at task creation and when the task is started by act_tsk
service call

The extended information (exinf) which is specified at task creation is passed to the task.

(2) When the task is started by sta_tsk service call

The task start code (stacd) which is specified by sta_tsk service call is passed to the task.

Section2 Kernel

Rev.6.00 14
REJ10B0060-0600

2.6.4 Task Scheduling

Scheduling: For each task, a task priority is assigned to determine the priority of processing. A
smaller value indicates a higher priority level and level 1 is the highest priority.

The kernel selects the highest-priority task from the READY tasks and puts it in the RUNNING
state.

The same priority can be assigned for multiple tasks. When there are multiple READY tasks
with the highest priority, the kernel selects the first task that became READY and puts it in the
RUNNING state. To implement this behavior, the kernel has ready queues, which are READY
task queues waiting for execution.

While execution is in a non-task context, no task is executed until the non-task context
processing is completed.

Round-Robin Scheduling: The kernel also supports round-robin scheduling, where the CPU
allocates equal time to tasks with a given priority by rotating the ready queue at specific
intervals. The round-robin scheduling can be achieved by issuing the rot_rdq service call that
manipulates the ready queues.

• Round-Robin Scheduling with rot_rdq Service call

By issuing rot_rdq at specific cycles, execution can be switched at specific intervals to a task
that has the same priority as the executing task.

Limitations to Scheduling: When the system enters the dispatch-disabled state by the dis_dsp
service call, task scheduling is disabled. Task scheduling is enabled when the system enters the
dispatch-enabled state by the ena_dsp service call.

When the system enters the CPU-locked state by the loc_cpu service call, both task scheduling
and all interrupts other than kernel management interrupts are disabled. Task scheduling and
interrupts are enabled when the system enters the CPU-unlocked state by the unl_cpu service
call.

Section2 Kernel

Rev.6.00 15
REJ10B0060-0600

2.6.5 Task Termination and Deletion

Task termination means that a task is finished and can enter the DORMANT or NON-
EXISTENT state.

• ext_tsk is issued

• exd_tsk is issued

• ter_tsk is issued to the target task

When a task is terminated and then re-initiated, or when the number of initiation request queues
specified in the act_tsk service call is other than 0, the task starts from the initial state.

When a task will no longer be used or when re-assigning the task ID to another task or, the
exd_tsk service call is issued and the task is made NON-EXISTENT. The ID can now be
assigned to another task. A task must release its resources before execution can be completed.
Note that the mutex is unlocked when a task is terminated and deleted.

The kernel performs the following processing when a task is terminated:

• Unlock the mutex that is locked by the current task

• Clear the upper limit processor time

The kernel performs the following processing when a task is deleted:

• Release the task stack area

2.6.6 Task Stack

There are three methods of allocating stacks.

Static Stack: The static stack is defined for each task by the configurator when the system is
configured. A shared stack function, which allows more than one task to use a single stack, is
available for tasks that use the static stack.

Dynamic Stack: When a task is created, the kernel assigns a stack area to the task . The stack is
allocated in the dynamic stack area (CFG_TSKSTKSZ). A shared stack function is not available
for tasks that use a dynamic stack.

Stack Allocated by Application: The application allocates a stack area and specifies the
address at task creation. A shared stack function is not available for tasks that use this type of
stack.

Section2 Kernel

Rev.6.00 16
REJ10B0060-0600

The configurator specifies the maximum task ID (CFG_STSTKID), which represents the
maximum ID of a task using the static stack, and the maximum task ID (CFG_MAXTSKID) in
the system. Tasks with task IDs between 1 and CFG_STSTKID use the static stack, while tasks
with task IDs between CFG_STSTKID + 1 and CFG_MAXTSKID use the dynamic stack or
stack allocated by application. If CFG_STSTKID is specified as 0, no static stack is used. If
CFG_STSTKID and CFG_MAXTSKID are specified as the same value, all tasks use the static
stack.

2.6.7 Shared Stack Function

More than one task can share one static stack. This reduces the total stack area. The shared stack
function is not defined in the µITRON4.0 specification.

Shared stack and static stack assignment is defined by the configurator. However, only one task
in a task group that shares a stack can be executed at a time. When multiple tasks are initiated
and share a stack, the task that was initiated first uses the stack first. The remaining tasks enter
the shared-stack wait state. Tasks in the shared-stack wait state are managed as a first-in first-
out (FIFO) queue, regardless of their priority. Tasks are sent to the shared-stack wait queue in
the order in which they were initiated.

A shared stack is released from the task when the task becomes DORMANT. When tasks are
waiting for the shared stack, the task at the head of the wait queue will use the stack, and enters
the READY state.

Figure 2.2 shows the task-state transitions for the shared stack function.

Section2 Kernel

Rev.6.00 17
REJ10B0060-0600

READY
(executable state)

RUNNING
(execution state)

WAITING
(wait state)

WAITING-SUSPENDED
(double-wait state)

SUSPENDED
 (forcible-wait state)

WAITING-SUSPENDED
 (shared stack

 double-wait state)

DORMANT
(inactive state)

NON-EXISTENT
(unregistered state)

Forcible
termination
(ter_tsk)

Resumption
(rsm_tsk, frsm_tsk)

Suspension
(sus_tsk)

Shared stack
allocation

Shared stack
allocation

Shared stack is
released or unused
(act_tsk, sta_tsk)

When the shared
stack is monopolized
(act_tsk, sta_tsk)

WAITING
(shared stack wait state)

Figure 2.2 Task-State Transitions for the Shared Stack Function

Section2 Kernel

Rev.6.00 18
REJ10B0060-0600

2.6.8 Task Execution Mode

In some cases, one task may force another task to terminate (by issuing ter_tsk) before the other
task releases the resources it has been using. In addition, one task may forcibly be terminated at
an inappropriate time by issuing the sus_tsk service call.

To mask requests issued by ter_tsk or sus_tsk service calls, use the vchg_tmd service call.

2.6.9 Exclusive Control

In some cases, during execution of one task, the task may need to be executed exclusively with
another program. For example, when task A and interrupt handler B refer to and modify the
same global variable, reference and modification must be exclusive. The target program to
control exclusivity can be an interrupt handler, specific task, or any other task.

Table 2.5 shows the way to ensure that tasks execute exclusively.

Table 2.5 Exclusive Control

Exclusive Control Inhibited Interrupts Task Scheduling

Enter the CPU-locked state by
issuing loc_cpu

Equal to or lower than the
kernel interrupt mask level
(CFG_KNLMSKLVL)

None

Mask interrupts by issuing
chg_ims service call (When the
chg_ims service call is issued from
the task context state, the
execution becomes the non-task
context state

Equal to or lower than the
specified mask level

None

Enter disabled-dispatch state by
issuing dis_dsp service call

None None

Exclusive control by semaphore None The kernel schedules tasks;
however, in tasks using the
same semaphore, the number
of tasks entering the READY
state simultaneously is limited
to the semaphore initial count
value.

Exclusive control by mutex None The kernel schedules tasks;
however, tasks using the
same mutex cannot enter the
READY state simultaneously.
In addition, in tasks using the
same mutex, the task priority
inversion will not occur.

Section2 Kernel

Rev.6.00 19
REJ10B0060-0600

2.6.10 Task Event Flags

Task event flags are a bit patterns for tasks. A task can wait for a specified bit to be set in the
task event flag for the current task; that is, it can wait until the specified event occurs.

Task event flags are controlled by the service calls listed in table 2.6.

Table 2.6 Service Calls for Task Event Flag Control

Service Call Name Description

vset_tfl, ivset_tfl Sets task event flag

vclr_tfl, ivclr_tfl Clears the event flag

vwai_tfl Waits for event occurrence

vpol_tfl Polls for event occurrence

vtwai_tfl Waits for event to occur, with timeout

Figure 2.3 shows an example of the using task event flags.

Time

vclr_tfl

Task A Task B

Interrupt
handler
C

Task A
event flags

vwai_tfl
<WAITING>

<READY> vset_tfl

ivset_tfl

1

2

3

4

0

0

0 7

Figure 2.3 Example of Using Task Event Flag

Section2 Kernel

Rev.6.00 20
REJ10B0060-0600

Description:

The bold lines indicate executed processing, and the following describes the task event flag
operation with respect to time.

1. Task A issues vclr_tfl to clear all bits in its task event flag.

2. Task A issues vwai_tfl (waiting pattern = H'ffffffff) to wait for an event.

3. Task B issues vset_tfl (set pattern = 1) to task A. Since this set pattern is included in the
waiting pattern specified in task A, the WAITING state of task A is cancelled and the task A
event flags are cleared to 0.

4. Interrupt handler C issues ivset_tfl (set pattern = 7) to set event flags of the task A. In this
case, however, task A does not wait for an event, therefore the task event flags are logically
ORed with a pattern specified by vset_tfl.

2.7 Task Exception Processing
Task exception processing is performed when an exception occurs during task execution. Task
exception processing is performed asynchronously with task processing and is similar to the
function generally called "signal".

Task exception processing is controlled by the service calls listed in table 2.7.

Table 2.7 Service Calls for Task Exception Processing

Service Call Name Function

def_tex, idef_tex Defines a task exception processing routine

ras_tex, iras_tex Requests task exception processing

dis_tex Disables task exception processing

ena_tex Enables task exception processing

sns_tex Refers to the task exception disable state

ref_tex, iref_tex Refers to the task exception processing state

Section2 Kernel

Rev.6.00 21
REJ10B0060-0600

Task exception processing routines can also be defined by the configurator. Figure 2.4 shows an
example of task exception processing.

Enable task A exception
(ena_tex)

An exception occurs
ras_tex (Task A, 0x00000101)

(b)

(a)

(c)

Task A

Task exception
processing routine

Clear the exception source and
disable task exception

(d)

Figure 2.4 Example of Task Exception Processing

Description (Letters indicate the order of operation):

(a) Task A enables a task exception.

(b) An exception (exception factor = 00000101) is requested from task A via the ras_tex service
call during task A execution.

(c) When task A is scheduled to execute, task exception processing is initiated before the task A
main routine is executed. During task exception processing, the task enters the task
exception processing disabled state and the task exception source is cleared.

(d) After returning from the task exception processing routine, the task A main routine is
resumed.

Section2 Kernel

Rev.6.00 22
REJ10B0060-0600

2.8 Semaphore
The elements required for task execution are called resources. They include the memory shared
between tasks and hardware, like I/O. A semaphore is an object, and provides exclusive control
and a synchronization function by expressing the existence and the number of resources by a
counter. In this case, tasks must be created in order to separate a region of a task that are to be
exclusively accessed using wai_sem and sig_sem service calls. Usually, the number of
resources that can be used is the number of resources initially defined.

The semaphores are controlled by the service calls listed in table 2.8.

Table 2.8 Service Calls for Semaphore Control

Service Call Name Function

cre_sem, icre_sem Creates a semaphore

acre_sem, iacre_sem Creates a semaphore (automatically assigns ID)

del_sem Deletes a semaphore

sig_sem, isig_sem Releases a resource

wai_sem Acquires a resource

pol_sem, ipol_sem Polls and gets a resource

twai_sem Requests resource allocation with timeout

ref_sem, iref_sem Refers to the semaphore state

Semaphores can also be created by the configurator. Figure 2.5 shows an example of using
semaphore.

Section2 Kernel

Rev.6.00 23
REJ10B0060-0600

Time

cre_sem

Task A Task B Task C
Semaphore
count

wai_sem

<WAITING>

<READY>

2

2 1

1 0

0

0 1

1

2

3

4

5

6

sig_sem

wai_sem

wai_sem

sig_sem

Figure 2.5 Example of Using Semaphore

Description:

Bold lines represent executed processing, and dotted lines represent the region where tasks can
exclusively access resources. The following describes the semaphore operation with respect to
time.

1. Task A creates semaphores by cre_sem. The initial value is 2 (semaphore counter = 2).

2. Task A issues wai_sem and gets a semaphore, decrementing the semaphore count by 1
(semaphore counter = 1). Task A continues execution.

3. Task B issues wai_sem.

4. Task C issues wai_sem, but cannot get a semaphore because the semaphore counter is 0, and
it enters the WAITING state.

5. Task A releases a semaphore by issuing sig_sem. The released semaphore is allocated to
task C, and task C is released from the WAITING state.

6. Task B releases a semaphore by issuing sig_sem. There is no task waiting for a semaphore,
and so the semaphore counter is incremented by 1.

Section2 Kernel

Rev.6.00 24
REJ10B0060-0600

2.9 Event Flag
An event flag is a bit-group corresponding to events. One event corresponds to one bit. More
than one task can wait for a specified bit to be set in an event flag, that is, tasks can wait until the
specified event occurs.

Table 2.9 shows the service calls for event flag control.

Table 2.9 Service Calls for Event Flag Control

Service Call Name Description

cre_flg, icre_flg Creates an event flag

acre_flg, iacre_flg Creates an event flag (automatically assigns ID)

del_flg Deletes an event flag

set_flg, iset_flg Sets an event flag

clr_flg, iclr_flg Clears an event flag

wai_flg Waits for event occurrence

pol_flg, ipol_flg Waits for event occurrence (polling)

twai_flg Waits for event occurrence with timeout

ref_flg, iref_flg Refers to the event flag status

Event flags can also be created by the configurator. Figure 2.6 shows an example of using event
flags.

Section2 Kernel

Rev.6.00 25
REJ10B0060-0600

Time

cre_flg

Task A Task B

Interrupt
handler
C

Event flag
pattern

wai_flg
<WAITING>

<READY> set_flg

iset_flg

0

0

0 1

1

2

3

4

Figure 2.6 Example of Using an Event Flag

Description:

Bold lines represent executed processing. The following describes event flag operation with
respect to time.

1. Task A issues cre_flg to create an event flag. The TA_CLR attribute (clear event flag to 0
when the WAITING state is released) is specified and the initial pattern is specified as 0.

2. Task A issues wai_flg (waiting pattern = 3, AND wait) to wait for an event.

3. Task B issues set_flg (set pattern = 7). Since all bits that task A was waiting for have been
set, task A is released from the WAITING state. In addition, since the TA_CLR attribute has
been specified, the event flag is cleared to 0.

4. Interrupt handler C sets the event flag by issuing iset_flg (set pattern = 1). In this case there
is no task waiting for an event, and the event flag is ORed with the pattern specified by
iset_flg.

Section2 Kernel

Rev.6.00 26
REJ10B0060-0600

2.10 Data Queue
A data queue is used to send or receive 1-word data (4-byte data) between tasks. High-speed
data communication can be achieved using a data queue, as communication using a data queue
copies 1-word data itself. In addition, pointers can also be specified as data.

The area of each data queue is allocated in the data queue area (CFG_DTQSZ) specified through
the configurator.

The data queues are controlled by the service calls listed in table 2.10.

Table 2.10 Service Calls for Data Queue Control

Service Call Name Function

cre_dtq, icre_dtq Creates a data queue

acre_dtq, iacre_dtq Creates a data queue (automatically assigns ID)

del_dtq Deletes a data queue

snd_dtq Sends data to a data queue

psnd_dtq, ipsnd_dtq Sends data to a data queue (polling)

tsnd_dtq Sends data to a data queue (with timeout)

fsnd_dtq, ifsnd_dtq Forcibly sends data to a data queue

rcv_dtq Receives data from a data queue

prcv_dtq Receives data from a data queue (polling)

trcv_dtq Receives data from a data queue (with timeout)

ref_dtq, iref_dtq Refers to the data queue state

Data queues can also be created by the configurator. Figure 2.7 shows an example of using a
data queue.

Section2 Kernel

Rev.6.00 27
REJ10B0060-0600

Time

cre_dtq

Task A
Interrupt
handler
B

Task C

Data queue status

 snd_dtq(X)

<READY>

ipsnd_dtq(Y)

rcv_dtq
(Receive X)

1

2

3

4

5

snd_dtq(Z)
<WAITING>

E
m

pty
E

m
pty

X

E
m

pty

X

X

Y

Y

YZ

Figure 2.7 Example of Using Data Queue

Description:

Bold lines represent executed processing. The following describes the data queue operation with
respect to time.

1. Task A issues cre_dtq to create a data queue with a size of two words.

2. Task A sends data X by issuing snd_dtq. Data X is copied to the data queue and task A
continues execution.

3. Interrupt handler B sends data Y by issuing ipsnd_dtq.

4. Task A attempts to send data Z. At this time, since there is no empty entry in the data queue,
task A enters the WAITING state.

5. Task C receives data from a data queue by issuing rcv_dtq. Task C gets data X, which is
initially copied. At this time, since one entry in the data queue is released, data Z, which task
A has attempted to send, is copied to a data queue, and task A is released from the
WAITING state.

Section2 Kernel

Rev.6.00 28
REJ10B0060-0600

2.11 Mailbox
A mailbox is used to send or receive message data between tasks. Since the communication
using a mailbox sends and receives the message start address, it is fast regardless of the message
size.

The mailboxes are controlled by the service calls listed in table 2.11.

Table 2.11 Service Calls for Mailbox Control

Service Call Name Function

cre_mbx, icre_mbx Creates a mailbox

acre_mbx, iacre_mbx Creates a mailbox (automatically assigns ID)

del_mbx Deletes a mailbox

snd_mbx, isnd_mbx Sends a message to a mailbox

rcv_mbx Receives a message from a mailbox

prcv_mbx, iprcv_mbx Receives a message from a mailbox (polling)

trcv_mbx Receives a message from a mailbox (with timeout)

ref_mbx, iref_mbx Refers to the mailbox status

Figure 2.8 shows an example of using mailbox.

Section2 Kernel

Rev.6.00 29
REJ10B0060-0600

Time

cre_mbx

Task CTask BTask C

Mailbox
status

rcv_mbx
<WAITING>

<READY>
(Receive X)

snd_mbx(Y)

1

2

3

4

5

6 rcv_mbx
(Receive Y)

snd_mbx(X)

snd_mbx(Z)

Task queue
waiting to
receive

Send
message
queue

NoneNone

Y

Task A None

None

None

None

Y

Z

Z

Task A

Figure 2.8 Example of Using Mailbox

Description:

Bold lines represent executed processing. The following describes the mailbox operation with
respect to time.

1. Task A issues cre_mbx to create a mailbox. At this time, the TA_TFIFO attribute (tasks
waiting to receive are queued in FIFO) and the TA_MFIFO attribute (sent messages are
queued in FIFO) are specified.

2. Task A attempts to receive a message by using rcv_mbx. Since no message is stored in the
mailbox, task A enters the WAITING state.

3. Task B sends message X to the mailbox using snd_mbx, and stores a message in the
mailbox.
At this time, task A is released from the WAITING state, and task A receives the address of
message X.

4. Task B sends message Y to the mailbox using snd_mbx.
At this time, since no tasks are waiting for a message, message Y is stored in a message
queue.

5. Task C sends message Z to the mailbox using snd_mbx. In this case, message Z is also
stored in a massage queue (FIFO) because the TA_MFIFO attribute has been specified.

6. Task A issues rcv_mbx. At this time, task A receives the address of message Y, which is
placed at the top of the message queue.

Section2 Kernel

Rev.6.00 30
REJ10B0060-0600

2.12 Mutex
A mutex is used to achieve exclusive control by providing a priority ceiling protocol to avoid
priority inversion. In this protocol, the task that acquires a mutex is executed at a priority equal
to the ceiling priority specified in the mutex.

The mutex is controlled by the service calls listed in table 2.12.

Table 2.12 Service Calls for Mutex Control

Service Call Name Function

cre_mtx Creates a mutex

acre_mtx Creates a mutex (automatically assigns ID)

del_mtx Deletes a mutex

loc_mtx Locks a mutex

ploc_mtx Locks a mutex (polling)

tloc_mtx Locks a mutex (with timeout)

unl_mtx Unlocks a mutex

ref_mtx Refers to the mutex status

Mutexes can also be created by the configurator. Figure 2.9 shows an example of using mutex.

lo
c_

m
tx

un
l_

m
tx

lo
c_

m
tx

RUNNING

RUNNING

WAITING

WAITING READY

READY

RUNNING

READY

un
l_

m
tx

RUNNING

RUNNING

RUNNING

lo
c_

m
tx

un
l_

m
tx

RUNNING

RUNNING

WAITINGTask A

Task B

Task C

Upper limit priority

Priority

Higher

Lower

Time1 2 3 4 5 76

Figure 2.9 Example of Using Mutex

Section2 Kernel

Rev.6.00 31
REJ10B0060-0600

Description:

In figure 2.9, the priorities of tasks A, B, and C are defined as task A highest and task C lowest.
Note that the ceiling priority specified by the mutex is specified as higher than the priority of the
task that locks the mutex. The following describes the mutex operation with respect to time.

1. Task C locks a mutex by issuing loc_mtx. At this time, the priority of task C is pushed up to
the ceiling priority specified by the mutex.

2. Task A enters the READY state while task C is executed at a priority equal to the ceiling
priority specified by the mutex. Although the priority of task A is higher than that of task C
at initial specification, task C now locks a mutex to be executed at the ceiling priority which
is higher than task A and task A cannot enter the RUNNING state. In other words, while
task C locks a mutex, task C continues execution even if the initial task priority of task A is
higher than task C.

3. Task C unlocks the mutex by issuing unl_mtx. At this time, the priority of task C returns to
the initial priority and task A enters the RUNNING state.

4. Task A issues loc_mtx to push its priority up to the ceiling priority specified in the mutex.

5. Task A issues unl_mtx to return its priority to the initial priority.

6. Task B issues loc_mtx to push its priority up to the ceiling priority specified in the mutex.

7. Task B issues unl_mtx to return its priority to the initial priority.

Section2 Kernel

Rev.6.00 32
REJ10B0060-0600

2.13 Message Buffer
A message buffer is used to send and receive data messages between tasks. Since a message
itself is copied and transferred in communication using a message buffer, the message area
becomes available immediately after the message has been sent regardless of whether a task has
received the message or not.

The area of each message buffer is allocated in the message buffer area (CFG_MBFSZ)
specified through the configurator.

The message buffers are controlled by the service calls listed in table 2.13.

Table 2.13 Service Calls for Message Buffer Control

Service Call Name Function

cre_mbf, icre_mbf Creates a message buffer

acre_mbf, iacre_mbf Creates a message buffer (automatically assigns ID)

del_mbf Deletes a message buffer

snd_mbf Sends a message to a message buffer

psnd_mbf, ipsnd_mbf Sends a message to a message buffer (polling)

tsnd_mbf Sends a message to a message buffer (with timeout)

rcv_mbf Receives a message from a message buffer

prcv_mbf Receives a message from a message buffer (polling)

trcv_mbf Receives a message from a message buffer (with timeout)

ref_mbf, iref_mbf Refers to the message buffer status

Message buffers can also be created by the configurator. Figure 2.10 shows an example of using
message buffer.

Section2 Kernel

Rev.6.00 33
REJ10B0060-0600

Time

cre_mbf (64 bytes)

Task A Task B Message
buffer
status

rcv_mbf ()
<WAITING>

<READY>
(Receive X)

snd_mbf (Y: 48 bytes)

1

2

3

4

rcv_mbf ()
(Receive Y)

5

snd_mbf (X: 16 bytes)

6

snd_mbf (Z: 32 bytes)
<WAITING>

Empty

Empty

Empty

Empty

Empty

Y

Y

Z<READY>

Figure 2.10 Example of Using Message Buffer

Description:

Bold lines represent executed processing. The following describes the message buffer operation
with respect to time.

1. Task A creates a 64-byte message buffer, which deals the message where the maximum size
is 48 bytes, by issuing cre_mbf.

2. Task A receives a message by preparing the 48-byte memory and issuing rcv_mbf. Task A is
placed in the WAITING state since there are no messages in the message buffer.

3. Task B sends a 16-byte message X by issuing snd_mbf. At this time, task A is released from
the WAITING state and message X is copied to the memory prepared by task A. Task A
receives message size 16 as the return parameter.

4. Task B sends a 48-byte message Y by issuing snd_mbf. At this time, since there are no tasks
waiting for a message, message Y is copied to the message buffer. In this case, the kernel
uses 4-byte message buffer area to copy message Y to the message buffer, however this is
not indicated in figure 2.10.

Section2 Kernel

Rev.6.00 34
REJ10B0060-0600

5. Task B attempts to send 32-byte message Z by issuing snd_mbf. At this time, since the
message buffer is not large enough to store message Z, task B is placed in the WAITING
state.

6. Task A prepares the 48-byte memory and issues rcv_mbf to receive a message, 48-byte
message Y stored in the message buffer is copied to the memory prepared by task A. Task A
receives message size 48 as the return parameter. At this time, since the message buffer has
sufficient space to store message Z, task B is released from the WAITING state and message
Z is copied to the message buffer.

Section2 Kernel

Rev.6.00 35
REJ10B0060-0600

2.14 Fixed-Size Memory Pool
A task can acquire and use a fixed-size memory block, whose fixed-size is determined for each
memory pool, from the fixed-size memory pool. The size can be specified when the memory
pool is created.

The area of each memory pool is allocated in the fixed-size memory pool area (CFG_MPFSZ)
specified through the configurator.

An area allocated by the application can also be used as a fixed-size memory pool. In this case,
the address of a memory pool area must be specified at creation.

The user can choose either of the following management methods through the configurator
(CFG_MPFMANAGE).

(1) Conventional method (CFG_MPFMANAGE not selected)

The kernel places the kernel management tables adjacent to the memory blocks in the
memory pool. This method is compatible with the previous versions (HI7000/4 V.1.0.05 or
earlier, HI7700/4 V.1.03 Release 02 or earlier, and HI7750/4 V.1.1.00 or earlier versions).

(2) Extended method (CFG_MPFMANAGE selected)

The kernel places the kernel management tables outside of the memory pool.

In this method, the application must specify the address of the management tables at creation
of the fixed-size memory pool.

The application must allocate the area for management tables.

The fixed-size memory pools are controlled by the service calls listed in table 2.14.

Table 2.14 Service Calls for Fixed-Size Memory Pool Control

Service Call Name Function

cre_mpf, icre_mpf Creates a fixed-size memory pool

acre_mpf, iacre_mpf Creates a fixed-size memory pool (automatically assigns ID)

del_mpf Deletes a fixed-size memory pool

get_mpf Gets a fixed-size memory block

pget_mpf, ipget_mpf Gets a fixed-size memory block (polling)

tget_mpf Gets a fixed-size memory block (with timeout)

rel_mpf, irel_mpf Returns a fixed-size memory block

ref_mpf, iref_mpf Refers to the fixed-size memory pool status

A fixed-size memory pool can also be created by the configurator. Figure 2.11 shows an
example of using fixed-size memory pool.

Section2 Kernel

Rev.6.00 36
REJ10B0060-0600

Time

cre_mpf
(16 bytes, 3 blocks)

Task A Task B Fixed-size
memory pool
status

get_mpf (Get X)

get_mpf
<WAITING>

1

2

3

4

5

6
<READY>
(Get W)

get_mpf (Get Y)

rel_mpf(Y)

get_mpf (Get Z)

Empty Empty Empty

EmptyYX

EmptyEmptyX

ZWX

ZYX

ZYX

Figure 2.11 Example of Using Fixed-Size Memory Pool

Description:

Bold lines represent executed process. The following describes the fixed-size memory pool
operation with respect to time.

1. Task A issues cre_mpf to create a fixed-size memory pool that has three 16-byte memory
blocks.

2. Task A gets block X by issuing get_mpf.

3. Task B gets block Y by issuing get_mpf.

4. Task B gets block Z by issuing get_mpf.

5. Task A attempts to get a block by issuing get_mpf. At this time, no memory blocks are
available and task A enters the WAITING state.

6. Task B returns block Y by issuing rel_mpf. At this time, task A is released from the
WAITING state and the released block Y is allocated to task A.

Section2 Kernel

Rev.6.00 37
REJ10B0060-0600

2.15 Variable-Size Memory Pool

2.15.1 Overview

A task can acquire a variable-size memory block from the variable-size memory pool. Although
the variable-size memory pool is more flexible than fixed-size memory pool, the overhead is
large when acquiring or releasing variable-size memory block. Also, in a variable-size memory
pool, there is a possibility of fragmentation. This means that even if there is enough total space
to acquire a variable-size memory block, it cannot be acquired if the area is not contiguous.

The area of each memory pool is allocated in the variable-size memory pool area
(CFG_MPLSZ) specified through the configurator.

An area allocated by the application can also be used as a variable-size memory pool. In this
case, the address of a memory pool area must be specified at creation.

The user can choose either of the following management methods through the configurator
(CFG_NEWMPL).

(1) Conventional method (CFG_NEWMPL not selected)

This method is compatible with the following previous versions

⎯ HI7000/4 V.2.00 Release 02 or earlier
⎯ HI7700/4 V.1.03 Release 02 or earlier
⎯ HI7750/4 V.1.1.00 or earlier

(2) New method (CFG_NEWMPL selected)

This method has the following advantages over the conventional method.

⎯ Acquisition and return of memory blocks are faster when a large number of memory
blocks are used in the memory pool.

⎯ The VTA_UNFRAGMENT attribute can be used to reduce fragmentation of free space.
When CFG_NEWMPL is selected, note that new members are added to the T_CMPL
structure in comparison with the conventional method. For details, refer to section 3.14.1,
Create Variable-Size Memory Pool.

The variable-size memory pools are controlled by the service calls listed in table 2.15.

Section2 Kernel

Rev.6.00 38
REJ10B0060-0600

Table 2.15 Service Calls for Variable-Size Memory Pool Control

Service Call Name Function

cre_mpl, icre_mpl Creates a variable-size memory pool

acre_mpl, iacre_mpl Creates a variable-size memory pool (automatically assigns ID)

del_mpl Deletes a variable-size memory pool

get_mpl Gets a variable-size memory block

pget_mpl, ipget_mpl Gets a variable-size memory block (polling)

tget_mpl Gets a variable-size memory block (with timeout)

rel_mpl, irel_mpl Returns a variable-size memory block

ref_mpl, iref_mpl Refers to the variable-size memory pool status

A variable-size memory pool can also be created by the configurator.

Figure 2.12 shows an example of using variable-size memory pool.

Section2 Kernel

Rev.6.00 39
REJ10B0060-0600

Time

cre_mpl
(400 bytes)

Task A Task B Variable-size
memory pool status

get_mpl (256 bytes)
<WAITING>

1

2

3

4

<READY>
(Get W)

5

get_mpl (192 bytes)
(Get X)

6

7

8

rel_mpl(X)

rel_mpl(Z)

rel_mpl(Y)

get_mpl (32 bytes)
(Get Y)

EmptyYX

W

ZYXget_mpl (96 bytes)
(Get Z)

Empty

EmptyX

Empty

ZYX
Empty

ZY
Empty

EmptyY

Empty

Empty

Empty

Figure 2.12 Example of Using Variable-Size Memory Pool

Description:

Bold lines represent executed process. The following describes the variable-size memory pool
operation with respect to time.
1. Task A creates a 400-byte variable-size memory pool by issuing cre_mpl.

2. Task B acquires 192-byte memory block X by issuing get_mpl. At this time, the kernel uses
16 bytes in the memory pool. This is not indicated in figure 2.12.

3. Task B also acquires 32-byte memory block Y by issuing get_mpl.

4. Task B also acquires 96-byte memory block Z by issuing get_mpl.

5. Task A attempts to acquire a 256-byte memory block by issuing get_mpl. However, the
available memory block is insufficient to assign a 256-byte memory block to task A, so task
A enters the WAITING state.

6. Task B returns 192-byte memory block X by issuing rel_mpl. At this time, since there is not
256 bytes of contiguous memory in the memory pool, task A remains in the WAITING state.

Section2 Kernel

Rev.6.00 40
REJ10B0060-0600

7. Task B returns 96-byte memory block Z by issuing rel_mpl. At this time, the total available
memory blocks is more than 256 bytes, however there is not 256 bytes of contiguous
memory in the memory pool, so task A remains the WAITING state.

8. Task B returns 32-byte memory block Y by issuing rel_mpl. At this time, since there is more
than 256 bytes of contiguous memory in the memory pool, task A is released from the
WAITING state and 256-byte memory block W is assigned to task A.

2.15.2 Controlling Fragmentation of Free Space

Repeated acquisition and release of memory blocks in a variable-sized memory pool causes
fragmentation of the available memory area. When the memory area is fragmented, even if the
total amount of free space is sufficient for a required memory block, the non-contiguity of the
available areas means that a large memory block cannot be acquired (figure 2.13).

Free space

In use

Free space

In use

In use

Free space

In use

Figure 2.13 Fragmentation of Free Space

Selecting CFG_NEWMPL on the [Variable-Size Memory Pool] page of the configurator slightly
reduces the degree of fragmentation. Specify the VTA_UNFRAGMENT attribute for variable-
size memory pools to further reduce fragmentation. Although specification of the
VTA_UNFRAGMENT attribute generally helps in reducing fragmentation, the degree of
fragmentation will depend on how variable-size memory pools are used.

When CFG_NEWMPL is selected, parameters (minimum block size, number of sectors, and
management table address) for the VTA_UNFRAGMENT attribute are added to the T_CMPL
structure, which is specified at the time of variable-size memory pool creation.

When the VTA_UNFRAGMENT attribute is specified, the sector management method is
applied to the variable-size memory pools. This method reduces fragmentation when a large
number of small blocks and some large blocks are allocated in a large memory pool.

Section2 Kernel

Rev.6.00 41
REJ10B0060-0600

In this method, up to (minimum block size × 8 bytes) is handled as a "small block" size. The size
of each block acquisition request is rounded up as shown in table 2.16.

When a "small block" is requested, the kernel allocates a sector consisting of blocks each of
which has the rounded request size. The sector size is always minblksz × 32. This means that the
number of blocks in a sector depends on the requested size.

Table 2.16 Small Block Control

Acquisition Request Size (blksz)*
Size after
Rounding * Number of Blocks in a Sector

0 < blksz ≤ minblksz minblksz 32

minblksz < blksz ≤ minblksz × 2 minblksz × 2 16

minblksz × 2 < blksz ≤ minblksz × 4 minblksz × 4 8

minblksz × 4 < blksz ≤ minblksz × 8 minblksz × 8 4

Note: blksz: Requested size
 minblksz: Minimum block size

Then the kernel assigns one of the memory blocks in the sector as the requested block. The
remaining blocks in the sector are reserved for later requests for memory blocks with this size or
a smaller size.

In this manner, small blocks are allocated contiguously so that a larger free space is left
available.

Figure 2.14 shows an example of a variable-size memory pool when the minimum block size is
32.

First a 32-byte memory block is requested. Sector [A] with 32 × 32 = 1024 bytes is allocated and
32-byte area [A-1] in the sector is assigned for the requested block (figure 2.14 (1)). When a 16-
byte memory block is then requested, 32-byte area [A-2] in sector A is assigned (figure 2.14
(2)).

Next, a 36-byte memory block is requested. Since the size of each block in sector A is 32 bytes,
no block in sector A can be assigned for this request. To respond to this request, new sector [B]
is allocated for 16 blocks × 64 bytes (the requested size, 36, is rounded up to a multiple of the
minimum block size) = 1024 bytes, and 64-byte area [B-1] is assigned for the requested block
(figure 2.14 (3)).

Section2 Kernel

Rev.6.00 42
REJ10B0060-0600

[A-1] 32

[A-2] 32

[A-3] 32

[A-32] 32

:

[A-1] 32

[A-2] 32

[A-3] 32

[A-32] 32

:

[B-1] 64

[B-2] 64

:

[B-16] 64

[A-1] 32

[A-2] 32

[A-3] 32

[A-32] 32

:

Sector [A]

Sector [B]

(1) (2) (3)

Figure 2.14 Example of Variable-Size Memory Pool

If the maximum number of sectors have already been used or contiguous free space is not
sufficient to create a new sector, the requested size of the memory block is allocated without
creating a sector. In this case, free space may be fragmented. If contiguous free space is not
sufficient for the requested size, the memory block is allocated in a sector for a larger block size.

When all blocks in a sector are released, the sector itself is also released.

When a large block is requested (larger than minblksz × 8), the kernel always allocates a block
for the requested size without creating a sector.

2.15.3 Management of Variable-Size Memory Pool

The kernel creates a management table in a variable-size memory pool to manage the allocated
memory blocks. When determining the variable-size memory pool, note that the variable-size
memory pool area is used for the kernel management table area as well as the memory block
area to be acquired by the application.

(1) When CFG_NEWMPL is not selected

The kernel creates a 16-byte management table when a memory block is acquired. This
management table is released when the memory block is returned.

(2) When CFG_NEWMPL is selected

When the VTA_UNFRAGMENT attribute is specified, the kernel creates a 32-byte management
table at creation of a sector. This management table is released when the sector is released.

The kernel also creates a 32-byte management table when a memory block is allocated outside
of a sector while the VTA_UNFRAGMENT attribute is specified or when a memory block is
allocated while the VTA_UNFRAGMENT attribute is not specified. This management table is
released when the memory block is returned.

Section2 Kernel

Rev.6.00 43
REJ10B0060-0600

2.16 Time Management
The kernel provides the following functions related to time management:

• Reference to and setting of system clock

• Time event handler (cyclic handler, alarm handler, and overrun handler) execution control

• Task execution control such as timeout and time slicing

The kernel uses a counter called the system clock to perform the above functions. The unit of
time used in the service calls is 1 ms. A time tick can be specified as a value other than 1 ms by
specifying CFG_TICNUME (numerator of time tick cycle) and CFG_TICDENO (denominator
of time tick cycle) by the configurator.

To use the time management function, it is necessary to incorporate a timer driver. There are two
kinds of timer drivers, a standard timer driver and an optimization timer driver. However, an
optimization timer driver is the function currently supported only by HI7700/4. For details, refer
to Appendix D, Timer Driver.

The system clock is controlled by the service calls listed in table 2.17. Note that isig_tim is
automatically executed according to the configurator specifications (CFG_TIMUSE).

Table 2.17 Service Calls for System Clock Control

Service Call Name Function

isig_tim Provides a time tick

set_tim, iset_tim Sets system clock

get_tim, iget_tim Refers to system clock

Section2 Kernel

Rev.6.00 44
REJ10B0060-0600

2.16.1 Cyclic Handler

The cyclic handler is a time event handler that can be initiated at a specific cycle time interval
after the initiation phase has been passed.

Cyclic handlers are controlled by the service calls listed in table 2.18.

Table 2.18 Service Calls for Cyclic Handler Control

Service Call Name Function

cre_cyc, icre_cyc Creates a cyclic handler

acre_cyc, iacre_cyc Creates a cyclic handler (automatically assigns ID)

del_cyc Deletes a cyclic handler

sta_cyc, ista_cyc Initiates a cyclic handler

stp_cyc, istp_cyc Stops a cyclic handler

ref_cyc, iref_cyc Refers to a cyclic handler status

The cyclic handler can also be created by the configurator. There are two methods to initiate the
cyclic handler; storing the initiation phase, and not storing the initiation phase. In storing the
initiation phase, the cyclic handler is initiated based on the timing when the cyclic handler is
created. In not storing the initiation phase, the cyclic handler is initiated based on the timing
when the cyclic handler is started.

Figure 2.15 shows an example of using cyclic handler.

Section2 Kernel

Rev.6.00 45
REJ10B0060-0600

Initiation
phase

Initiation
cycle

Initiation
cycle

Initiation
cycle

Initiation
cycle

Not initiated Not initiated Not initiatedCyclic handler Cyclic handler

(Initiated) (Initiated)

Create a cyclic handler
(cre_cyc)

Initiate a cyclic handler
(sta_cyc)

Stop a cyclic handler
(stp_cyc)

Time

(a)

(b)

(c)

(d)

(e)

(f)

(I) Initiation phase is stored

Initiation
phase

Initiation
cycle

Initiation
cycle

Initiation
cycle

Initiation
cycle

Not initiated Not initiated Not initiatedCyclic handler Cyclic handler

(Initiated) (Initiated)

Create a cyclic handler
(cre_cyc)

Initiate a cyclic handler
(sta_cyc)

Stop a cyclic handler
(stp_cyc)

Time

(a)

(b)

(c)

(d)

(e)

(f)

(II) Initiation phase is not stored

Figure 2.15 Example of Using Cyclic Handler

Description:

(a) A cyclic handler (without TA_STA attribute specification) is created.

(b) The cyclic handler is not initiated after cycle time has passed since the cyclic handler
operation has not been initiated. The cyclic handler operation is initiated by issuing sta_cyc.

(c) When the initiation phase is stored as shown in (I) in figure 2.15, the cyclic handler is
initiated based on the initiation cycle after the cyclic handler has been created. When the
initiation phase is not stored as shown in (II) in Figure 2.15, the cyclic handler is initiated
based on the initiation cycle after the sta_cyc service call has been issued.

(d) The cyclic handler is terminated by issuing the stp_cyc service call.

(e) The cyclic handler is not initiated after cycle time has passed since the cyclic handler
operation has been terminated.

Section2 Kernel

Rev.6.00 46
REJ10B0060-0600

2.16.2 Alarm Handler

The alarm handler is a time event handler that can be initiated once when the specified time has
been reached. By using the alarm handler, processes can be done according to time.

Alarm handlers are controlled by the service calls listed in table 2.19.

Table 2.19 Service Calls for Alarm Handler Control

Service Call Name Function

cre_alm, icre_alm Creates an alarm handler

acre_alm, iacre_alm Creates an alarm handler (automatically assigns ID)

del_alm Deletes an alarm handler

sta_alm, ista_alm Initiates an alarm handler

stp_alm, istp_alm Stops an alarm handler

ref_alm, iref_alm Refers to an alarm handler status

The alarm handler can also be created by the configurator. Figure 2.16 shows an example of
using alarm handler.

Initiation time

Alarm handler is not initiated.Alarm handler

(Initiated)

Create an alarm
handler (cre_alm)

Initiate an alarm
handler (sta_alm)

Stop an alarm
handler (stp_alm)

Time

(a) (b)

(c)

(d)

Initiate an alarm
handler (sta_alm)

Initiation time

(e)

Figure 2.16 Example of Using Alarm Handler

Description:

(a) An alarm handler is created.

(b) The alarm handler operation is initiated by issuing sta_alm.

(c) The alarm handler is initiated after the specified initiation time has passed.

(d) If sta_alm is issued by specifying another initiation time, the alarm handler starts execution
again.

(e) Since stp_alm is issued before the initiation time has passed, the alarm handler is not
initiated.

Section2 Kernel

Rev.6.00 47
REJ10B0060-0600

2.16.3 Overrun Handler

The overrun handler is a time event handler that is initiated when the specified time has been
exceeded. Only one overrun handler can be defined in a single system.

The overrun handler is controlled by the service calls listed in table 2.20.

Table 2.20 Service Calls for Overrun Handler Control

Service Call Name Function

def_ovr Defines an overrun handler

sta_ovr, ista_ovr Initiates an overrun handler

stp_ovr, istp_ovr Stops an overrun handler

ref_ovr, iref_ovr Refers to an overrun handler status

The overrun handler can also be created by the configurator. Figure 2.17 shows an example of
using overrun handler.

Upper limit
processor time

An overrun handler is not initiated.Overrun handler

(Start execution)

Define an
overrun handler
(def_ovr)

Time

(a) (b)

(c)

(d) (e)

Initiate an
overrun handler
(sta_ovr)

Upper limit
processor time

Initiate an
overrun handler
(sta_ovr)

Stop an
overrun handler
(stp_ovr)

Figure 2.17 Example of Using Overrun Handler

Description:

(a) An overrun handler is defined.

(b) The upper-limit processor time for the task is specified by the sta_ovr service call. The
overrun handler is initiated at this point.

(c) If a total processor time used by the task exceeds the upper-limit processor time, the overrun
handler is initiated.

(d) If the upper-limit processor time is modified by the sta_ovr service call, the overrun handler
is initiated again.

(e) If stp_ovr is issued before the total processor time has exceeded the upper-limit processor
time, the overrun handler is terminated. In this case, the overrun handler is not initiated even
if the upper-limit processor time has been exceeded.

Section2 Kernel

Rev.6.00 48
REJ10B0060-0600

2.16.4 Notes on Time Management

(1) Drawbacks due to the repeated use

The following is performed when a timer interrupt occurs:

a. System clock is updated.

b. All alarm handlers that reached the initiation time are initiated and executed.

c. All cyclic handlers that reached the cycle time are initiated and executed.

d. The overrun handler is initiated and executed when the total processor time used by the task
has reached the specified upper limit processor time.

e. Timeout processing is performed after service calls such as tslp_tsk with timeout function,
have been issued and the specified timeout time has elapsed.

The processes from a to e are performed with the timer interrupt level masked. Among these
processes, b, c, and e may overlap for multiple tasks and handlers. In that case, the processing
time of the kernel becomes very long and results in the following defects.

• Delay of the response to interrupts

• Delay of system clocks

To avoid these problems, the following steps must be taken:

• The time event handler processing time must be as short as possible.

• The time event handler cycle and the timeout value specified by the timeout service call must
be set to as large a value as possible. If the cycle time of a cyclic handler is 1 ms and the
handler's processing time takes longer than 1 ms, that cyclic handler will be executed
forever; and the system will hang.

(2) Time Watch Method

Time parameters specified in service calls are specified using relative time. For example, if the
relative time is specified as 1 ms, the corresponding event processing is initiated at the time tick
when 1 ms has elapsed since the service call was issued. If the relative time is specified as 0 ms,
the corresponding event processing is initiated at the first time tick after the service call is
issued.

The system clock can be changed by issuing the set_tim service call. Note, however, that the
system clock for an event to which a time management request is issued before the set_tim
service call is not affected.

Section2 Kernel

Rev.6.00 49
REJ10B0060-0600

2.17 System State Management
The service calls listed in table 2.21 can be used to control system state.

Table 2.21 Service Calls for System State Management

Service Call Name Function

rot_rdq, irot_rdq Rotates ready queue

get_tid, iget_tid Refers to the task ID

loc_cpu, iloc_cpu Enters CPU-locked state

unl_cpu, iunl_cpu Releases CPU-locked state

dis_dsp Disables dispatch

ena_dsp Enables dispatch

sns_ctx Refers to the context

sns_loc Refers to the CPU-locked state

sns_dsp Refers to the dispatch-disable state

sns_dpn Refers to the dispatch-enable state

vsta_knl, ivsta_knl Initiates the kernel

vsys_dwn, ivsys_dwn System down

vget_trc, ivget_trc Acquires user event trace information

ivbgn_int Acquires trace information on interrupt handler initiation

ivend_int Acquires trace information on interrupt handler termination

2.17.1 System Down

When an error occurs, control is passed to the system down routine. Errors can be classified into
the following three types:

1. When the service call vsys_dwn or ivsys_dwn was issued from application.

2. When an error was detected inside the kernel.

3. When an undefined interrupt or exception occurred.

The user must create the system down routine. For details, refer to section 4.12, System Down
Routines.

Section2 Kernel

Rev.6.00 50
REJ10B0060-0600

2.17.2 Service Call Trace Function

The service call trace function is used to acquire the history of the service calls that are issued.
The debugging extension is used to visually refer to the acquired data.

The service call trace function automatically acquires task ID, PC, and service call parameters in
the following timing.

• A service call is issued and returned

• A task is initiated and terminated

• A task exception processing routine is initiated and terminated

If the ivbgn_int and ivend_int service calls are described at the beginning and end of the
interrupt handler, the trace information on interrupt handler initiation and termination can also
be acquired. In addition, the vget_trc and ivget_trc service calls allow the user to acquire trace
information on all timing.

Trace Information Storage Area: Trace information can be stored either in the target memory
of debugger such as E6000 emulator or simulator. The former is called "target trace" and the
latter is called "emulator trace" or "tool trace". Although the environment where emulator trace
can be used is limited, there is the feature of hardly needing the domain for service call trace on
a target memory. Refer to the manual or online help of the debugging extension for the
environment where emulator trace (tool trace) can be used.

Preparation for Service Call Trace Function: The service call trace function is specified in
the debugging function page of the configurator. At linkage, sections for trace such as
B_hitrcbuf for target trace and B_hitrceml for emulator trace must be assigned to the appropriate
addresses.

Section2 Kernel

Rev.6.00 51
REJ10B0060-0600

Note on Service Call Trace Function: The following must be noted when using the service call
trace function:

a. Degradation of performance

When the service call trace function is used, the performance of the kernel is degraded a
little.

b. Service call information not traced

Service calls for non-task context such as ixxx_yyy are all acquired as service calls for task
context such as xxx_yyy.

Following service calls cannot be traced.

⎯ isig_tim
⎯ cal_svc, ical_svc
⎯ vsta_knl, ivsta_knl
⎯ vsys_dwn, ivsys_dwn
⎯ vini_cac, ivini_cac
While using HI7700/4, the following service call also cannot be traced.

⎯ vchg_cop
While using HI7750/4, the following service calls also cannot be traced.

⎯ vfls_cac, ivfls_cac
⎯ vclr_cac, ivclr_cac
⎯ vinv_cac, ivinv_cac

Section2 Kernel

Rev.6.00 52
REJ10B0060-0600

2.18 Interrupt Management and System Configuration Management
In this kernel, interrupts and exceptions are classified as follows:

• Reset: CPU reset. A program executed at CPU reset is called the CPU initialization routine.

• Interrupt: An interrupt is generated from external interrupt pins and peripheral modules.

• CPU exception: A CPU exception is an exception such as an address error or divide-by-zero.
A CPU exception also includes a trap generated by a TRAPA instruction. When a CPU
exception occurs, a CPU exception handler is executed.

Interrupts and exceptions are controlled by the service calls listed in tables 2.22 and 2.23.

Table 2.22 Service Calls for Interrupt Control

Service Call Name Function

def_inh, idef_inh Defines an interrupt handler

chg_ims, ichg_ims Changes interrupt mask

get_ims, iget_ims Refers to interrupt mask

Table 2.23 Service Calls for Exception Control

Service Call Name Function

def_exc, idef_exc Defines a CPU exception handler

vdef_trp, ivdef_trp Defines a CPU exception handler (for TRAPA instruction)

ref_cfg, iref_cfg Refers to the configuration information

ref_ver, iref_ver Refers to version information

Interrupt handlers and CPU exception handlers (including the CPU exception handler for the
TRAPA instruction) can also be defined by the configurator. When an undefined interrupt or
exception occurs, the system down routine will be initiated.

Section2 Kernel

Rev.6.00 53
REJ10B0060-0600

2.18.1 Resetting the CPU and Initiating the Kernel

To reset the CPU and initiate the kernel, refer to figure 2.18.

Kernel initialization
Create objects
Execute initialization routine

Reset

Move to multitasking

Sample: _kernel_tmrini()
in nnnn_tmrdrv.c
Initialize the timer

Initialization routine

JMP or JSR instruction

vsta_knl service call

CPU initialization routine (Assembly language)
Sample: hi_cpuasm() in nnnn_cpuasm.src
Initialize BSC

CPU initialization routine (C language)
Sample: hi_cpuini() in nnnn_cpuini.src
Set program execution environment
(Initialize sections)

Figure 2.18 Flowchart from CPU Reset to Kernel Initiation

The CPU initialization routine should set the bus state controller (BSC) so that programs can
correctly access memory. A C-language program accesses stacks; therefore, the stacks must be
ready to be accessed before the C-language program is executed. The CPU initialization routine
should also set the C program execution environment, such as initializing sections. For details,
refer to the SuperH™ RISC engine C/C++ Compiler User's Manual.

Then, vsta_knl or ivsta_knl is called to initiate the kernel. When the kernel is initiated, control
does not return to the caller of vsta_knl and ivsta_knl.

The following is performed by vsta_knl and ivsta_knl:

a. All interrupts are disabled (SR.IMASK = 15 in the HI7000/4 or SR.BL = 1 in the HI7700/4
and HI7750/4).

b. The VBR is initialized.

c. SR.BL is cleared to 0 and SR.IMASK is set to 15 in the HI7700/4 and HI7750/4.

d. The kernel work area is initialized.

e. SR.IMASK is set to the kernel interrupt mask level. In the HI7700/4 and HI7750/4, SR.BL is
cleared at this time.

f. The initial defined objects specified in the configurator are created.

Section2 Kernel

Rev.6.00 54
REJ10B0060-0600

g. The system initialization routine specified in the configurator is called.

h. The multitasking environment is entered. All initial tasks are executed.

The program which issues the vsta_knl or ivsta_knl service call must normally be linked with
the kernel. Note, however, that since the address of vsta_knl and ivsta_knl service call is equal
to the start address of P_hireset section, vsta_knl can be issued only by specifying the P_hireset
section start address without kernel linkage.

For details on creating a CPU initialization routine, refer to section 4.11, CPU Initialization
Routines.

2.18.2 Interrupt Handlers

(1) Overview

When an interrupt occurs, an interrupt handler is initiated via kernel interrupt service routine.
To improve the interrupt response time, the kernel can define the interrupt mask level at system
configuration. The interrupt mask level is called the kernel interrupt mask level
(CFG_KNLMSKLVL). Interrupt handlers with mask levels higher than the kernel interrupt
mask level can be immediately accepted even when the kernel is executed. Note, however, that
the service call must be issued by the interrupt handlers with the levels higher than the kernel
interrupt mask level.

An interrupt handler is executed in the non-task context state. Tasks are scheduled after the
interrupt handler has completed execution; tasks are not scheduled even when a task with high
priority is in the READY state due to the service call issued while the interrupt handler was
being executed.

The interrupt handler must not make the interrupt mask level (IMASK bits in the SR register)
lower than the interrupt level.

(2) Direct interrupt handlers (only in the HI7000/4)

The HI7000/4 provides direct interrupt handlers, i.e. handlers that do not require a kernel
interrupt service routine. A direct interrupt handler is directly recorded as a CPU interrupt
vector, and the response is better than a normal interrupt handler. Direct interrupt handlers must
have interrupt levels higher than the kernel interrupt mask level.

The difference between normal and direct interrupt handlers is shown in table 2.24.

Section2 Kernel

Rev.6.00 55
REJ10B0060-0600

Table 2.24 Normal Interrupt Handler and Direct Interrupt Handler

Item Normal Interrupt Handler Direct Interrupt Handler

Initiation method when an
interrupt occurs

Initiated via kernel interrupt
processing

Initiated without kernel intervention
(a direct interrupt handler is defined
by a CPU interrupt vector)

Service call issuing
method

Service calls for non-task context are used. Note, however, that an
interrupt handler with level higher than CFG_KNLMSKLVL must not
issue a service call.

Interrupt level An interrupt with level higher than CFG_KNLMSKLVL must be defined
as a direct interrupt handler.

Definition method def_inh or idef_inh service call

Defined by the configurator

(3) Register banks (SH-2A, SH2A-FPU)

Refer to section 4.2.9, Register Banks (SH-2A, SH2A-FPU).

2.18.3 Disabling Interrupts

Interrupts are prohibited in one of the following four ways.

(a) loc_cpu, iloc_cpu service calls: Change the IMASK bits in the SR register to the kernel
interrupt mask level.

(b) chg_ims, ichg_ims service calls: Change IMASK bits in the SR register.

(c) Change IMASK bits in the SR register without a service call

(d) Change BL bit in the SR register without a service call (SH-3, SH3-DSP, SH4AL-DSP,
SH-4, SH-4A)

Do not issue service calls when the level set by the IMASK bits in the SR register is higher than
the kernel interrupt mask level (CFG_KNLMSKLVL) and the BL bit in the SR register is 1.

Section2 Kernel

Rev.6.00 56
REJ10B0060-0600

(a) loc_cpu, iloc_cpu service calls

These calls lock the CPU. When CPU is locked, interrupts with levels below the kernel interrupt
mask level are masked. During this period, the service calls that can be issued are restricted to
those described in 3.2.5, System State and Service Calls.

To cancel the CPU-locked state, issue unl_cpu or iunl_cpu. If an interrupt handler, CPU
exception handler, or time-event handler locks the CPU, the state must be released within the
same handler.

(b) chg_ims, ichg_ims service calls

The IMASK bits in the SR register are changed to the specified value. That is, interrupts below
the specified level are masked. When the CPU is locked, a chg_ims or ichg_ims call leads to an
error with the code E_CTX.

The context state is handled as a non-task context while the IMASK bits are changed to a value
other than 0 by chg_ims or ichg_ims.

To cancel the masking of interrupts by these calls, call ichg_ims to restore the IMASK bits in the
SR register to the value they had before the change.

However, when chg_ims has been called to mask interrupts by setting a value [A] for the
IMASK bits in the task context, the IMASK bits in the SR register must be [A] for ichg_ims to
be called to restore the IMASK bits. Otherwise, correct operation is not guaranteed. The
following is a bad example:

 /* At this point, - Task context

 - SR.I = 0 */

 chg_ims(SR_IMS05); /* (1) Change SR.I to 5 */

 set_imask(8); /* (2) Change SR.I to 8 */

 ichg_ims(SR_IMS00); /* (3) Change SR.I to 0 */

 /* The IMASK bits are 8; it must be 5 */

 /* for this call to work. */

To improve this example, add processing which returns IMASK bits to 5 before (3).

 /* At this point, - Task context

 - SR.I = 0 */

 chg_ims(SR_IMS05); /* (1) Change SR.I to 5 */

 set_imask(8); /* (2) Change SR.I to 8 */

 set_imask(5); /* (Add) Change SR.I to 5 */

 ichg_ims(SR_IMS00); /* (3) Change SR.I to 0 */

(c) Change IMASK bits of the SR register without a service call

The IMASK bits in the SR register are changed by the LDC instruction. In the C language, the
intrinsic functions set_imask() or set_cr(), which are supported by the compiler, are used for this
purpose.

Section2 Kernel

Rev.6.00 57
REJ10B0060-0600

In the task context, the IMASK bits can only be changed to values greater than the kernel
interrupt mask level by this method. If the value of the IMASK bits is changed to some other
value, correct operation is not guaranteed. This restriction does not apply in non-task contexts.

To cancel the change to the interrupt mask, restore the IMASK bits to their values before the
change.

(d) Change BL bit of the SR register without a service call (SH-3, SH3-DSP, SH4AL-DSP,
SH-4, SH-4A)

The BL bit in the SR register is changed to 1 by the LDC instruction. In the C language, the
intrinsic function set_cr(), which is supported by the compiler, is used for this purpose.

To cancel the interrupt mask, restore the pre-change value of the BL bit in the SR register.

2.18.4 Kernel Interrupt Mask Level (CFG_KNLMSKLVL):

The kernel interrupt mask level (CFG_KNLMSKLVL) specifies the interrupt level to mask
interrupts during kernel execution. The kernel interrupt mask level can be specified by the
configurator. However, interrupts having an interrupt level higher than the kernel interrupt mask
level are immediately accepted even during kernel execution. Note that handlers for the
interrupts having an interrupt level higher than the kernel interrupt mask level are not allowed to
issue a service call. When the interrupt mask level is set higher than the kernel interrupt mask
level, service calls cannot be issued, except when modifying the level of the interrupt mask
equal to or lower than the kernel interrupt mask level by using chg_ims.

In the HI7000/4, interrupt handlers with interrupt levels higher than the kernel interrupt mask
level must be defined as direct interrupt handlers.

Section2 Kernel

Rev.6.00 58
REJ10B0060-0600

2.18.5 CPU Exception

The CPU exception handler (including the TRAPA instruction) operates using the same context
as that when an exception occurred. The CPU exception handler uses the same stack as that
used by the exception source. Since the priority of the CPU exception handler is higher than that
of the dispatcher, task switching cannot be performed during the CPU exception processing.

In CPU exception handler processing, system states such as task execution mode remain at the
same state as when the exception occurred.

The CPU exception handler operates using the context at the time of the exception occurrence.
Note that the CPU exception handler can call only the following service calls:

• sns_ctx

• sns_loc

• sns_dsp

• sns_dpn

• sns_tex

• get_tid, iget_tid

• ras_tex, iras_tex

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

Section2 Kernel

Rev.6.00 59
REJ10B0060-0600

2.19 Service Call Management
A service call processing routine can be created and defined in the kernel as an extended service
call routine. If a process common to the system is created as an extended service call routine, the
handler can be called without linking to the processing routine.

Extended service calls are controlled by the service calls listed in table 2.25.

Table 2.25 Service Calls for Extended Service Call Control

Service Call Name Function

def_svc, idef_svc Defines an extended service call

cal_svc, ical_svc Issues an extended service call

Figure 2.19 shows an example of an extended service call routine.

Task

Define an extended
service call routine
(def_svc)

Kernel

To task

Extended service
call routine

End

Execute an extended
service call routine

Issue an extended
service call (cal_svc)

Maximum function code
(CFG_MAXSVCCD)

1

2

3

4

Extended
service call

(a)

(b)

(d)

(c)

Figure 2.19 Example of Extended SVC Handler

Description:

(a) Defines an extended service call.

(b) Issues the service call cal_svc to call the defined extended service call routine.

(c) Initiates the extended service call routine by the service call cal_svc issued by a task.

(d) Returns the extended service call routine to the caller.

Section2 Kernel

Rev.6.00 60
REJ10B0060-0600

In an extended service call routine, the task execution mode of the task which calls the extended
service call routine is retained. If the task calling the extended service call routine does not
mask the task termination request (ter_tsk) or suspension request (sus_tsk), these requests can
also be accepted immediately in the extended service call routine.

2.20 Cache Support (only for HI7700/4 and HI7750/4)
This function is used when it is necessary to establish coherence between the memory and cache,
such as when transferring the memory contents of an application to the cache (DMA transfer).

The cache support is controlled by service calls listed in table 2.26.

Table 2.26 Service Calls for Cache Support Control

Service Call Name Function

vini_cac, ivini_cac Initializes cache

vclr_cac, ivclr_cac Clears the cache

vfls_cac, ivfls_cac Flushes the cache

vinv_cac, ivinv_cac Invalidates the cache

Figure 2.20 shows an example of using a cache support.

Address array Data array

Cache

Flushes cache
(vfls_cac)

Clears cache
(vclr_cac)

Writeback

Invalidates cache
(vinv_cac)

Memory

Figure 2.20 Example of Using a Cache Support

Flushing the Cache: By writing the contents of the cache to the memory, coherence of the
cache and the memory is established. When a bus master such as the DMA reads memory
updated by the CPU, the contents of the cache must be flushed. Note that when the cache is used
in the write-through mode, data does not have to be flushed.

Section2 Kernel

Rev.6.00 61
REJ10B0060-0600

Clearing the Cache: The service call vclr_cac writes the contents of cache to the memory and
invalidates the contents of the cache

Invalidating the Cache: When the CPU reads memory updated by a bus master such as the
DMA, the contents of cache must be invalidated so that without fail the contents of the memory
can be read by the CPU. If the contents of the cache are invalidated for write-back mode, they
will not be written back to the memory even if data, not written back to the memory exists in the
cache. Therefore, the cache contents must be written back to the memory before invalidating the
cache.

The cache support function is used when it is necessary to establish coherence of the memory
and the cache, such as when transferring the memory contents of an application (DMA transfer).

Initializing the Cache: Before using the cache support function, vini_cac or ivini_cac must be
executed. vini_cac and ivini_cac can be called before kernel initiation.

Section2 Kernel

Rev.6.00 62
REJ10B0060-0600

2.21 Kernel Idling
When there is no executable task, the kernel enters the endless loop after handling the pre-fetch
function described later, and waits for an interrupt.

To use the low-power consumption mode of the CPU, the lowest-priority task is normally used
for transition to that mode.

2.22 Pre-fetch Function (only for HI7700/4 and HI7750/4)
The pre-fetch function allows an interrupt that occurs after the idle state to response quickly.
When the kernel enters the idle state, the pre-fetch function executes the PREF instruction
(cache pre-fetch instruction).

The area pre-fetched by the PREF instruction is specified by the configurator. Since the PREF
instruction supported by the SH-3 and SH3-DSP uses the instruction/data mixed-cache, either
program area or data area can be specified by the configurator. Since the PREF instruction
supported by the SH4AL-DSP, SH-4, and SH-4A uses operand cache, only data area can be
specified by the configurator.

2.23 Optimized Timer Driver (only for HI7700/4)
The HI7700/4 supports the optimized timer driver function whose purpose is low-power
consumption. For details, refer to Appendix E, Optimized Timer Driver (HI7700/4).

2.24 DSP Standby Control Function (only for HI7700/4)
The HI7700/4 supports the DSP standby control function whose purpose is low-power
consumption. For details, refer to Appendix F, DSP Standby Control.

Rev.6.00 63
REJ10B0060-0600

Section 3 Service Calls

3.1 Overview
Service calls are classified as shown in table 3.1.

Table 3.1 Service Call Classification

Classification Description

Task management function Initiates and terminates tasks

Task synchronization function Suspends and resumes task execution and task event flag

Task exception processing function Registers task exception processing routine, and requests,
enables, and disables task exception

Synchronization and
communication function

Manages semaphores, event flags, data queues, and
mailboxes

Extended synchronization and
communication function

Manages mutexes and message buffers

Memory pool management function Allocates memory dynamically

Time management function Notifies the time to the kernel, sets and references the
system clock, and defines the timer handler

System status management
function

Shifts to the CPU-locked state or dispatch-disabled state

Interrupt management function Defines the interrupt handler, and changes and references
the interrupt mask

Service call management function Defines and calls the extended service calls

System configuration management
function

Defines CPU exception handler and references the
configuration information

Cache support function
(HI7700/4 and HI7750/4)

Flushes, clears, and invalidates cache

Section3 Service Calls

Rev.6.00 64
REJ10B0060-0600

3.2 Service Call Interface
Service calls can be called from programs written in C or assembly language. This section
describes how to issue service calls.

3.2.1 C Language API

(1) Header File

Header file kernel.h must be included. kernel.h can be found in the hihead folder. For details on
the header file, refer to section 4.1, Header Files.

(2) Calling Form

All service calls are described in the following C language function call format.

#include "kernel.h"

 /* ... */

 ercd = act_tsk(1);

Section3 Service Calls

Rev.6.00 65
REJ10B0060-0600

(3) Basic Data Type

The basic data type defined in the HI7000/4 series are shown in the table 3.2.

Table 3.2 Basic Data Type

No. Data Type Meaning No. Data Type Meaning

1 B 8-bit signed integer 21 PRI 16-bit signed integer

2 H 16-bit signed integer 22 SIZE 32-bit unsigned integer

3 W 32-bit signed integer 23 TMO 32-bit signed integer

4 UB 8-bit unsigned integer 24 RELTIM 32-bit unsigned integer

5 UH 16-bit unsigned integer 25 SYSTIM A structure which
contains the following
members

6 UW 32-bit unsigned integer Upper: 16-bit unsigned
integer

7 VB 8-bit signed integer * Lower: 32-bit unsigned
integer

8 VH 16-bit signed integer * 26 VP_INT 32-bit signed integer *

9 VW 32-bit signed integer * 27 ER_BOOL 32-bit signed integer

10 VP pointer to void type 28 ER_ID 32-bit signed integer

11 FP pointer to void type
function

29 ER_UINT 32-bit signed integer

12 INT 32-bit signed integer 30 TEXPTN 32-bit unsigned integer

13 UINT 32-bit unsigned integer 31 FLGPTN 32-bit unsigned integer

14 BOOL 32-bit signed integer 32 RDVPTN 32-bit unsigned integer

15 FN 32-bit signed integer 33 RDVNO 32-bit unsigned integer

16 ER 32-bit signed integer 34 OVRTIM 32-bit unsigned integer

17 ID 16-bit signed integer 35 INHNO 32-bit unsigned integer

18 ATR 32-bit unsigned integer 36 EXCNO 32-bit unsigned integer

19 STAT 32-bit unsigned integer 37 IMASK 32-bit unsigned integer

20 MODE 32-bit unsigned integer

Note: When the variable values of these data types are referred to or substituted, the type must
be explicitly converted (casted).

Section3 Service Calls

Rev.6.00 66
REJ10B0060-0600

3.2.2 Assembly Language API

In most cases, a service call can be called from an assembly-language program, as shown in
figure 3.1. Offsets must be specified as #OFF_XXX_XXX, where XXX_XXX is the service call
name in uppercase characters.

 .INCLUDE “kernel.inc” ---------- (a)

 .IMPORT __kernel_cnfgtbl ------- (b)

_task:

 ;......

 MOV.L #OFF_ACT_TSK,R0 --------- (c)

 MOV.L #__kernel_cnfgtbl,R1

 MOV.L @(R0,R1),R0 ------------- (d)

 MOV.L #1,R4 ------------------- (e)

 JSR @R0 --------------------- (f)

 NOP
 ; -------------------------- (g)

Figure 3.1 Example of Service Call from an Assembly-Language Program

(a) Standard header file kernel.inc is included.

(b) Service call entry table of the kernel is externally referenced.

(c) Offset value corresponding to the service call must be specified.

(d) Entry address of the service call to be called must be found.

(e) Parameters must be specified.

(f) Service call function is called.

(g) After service call processing, execution returns to the address specified by the PR register
except for the service calls that do not return to the calling program. In this example,
execution returns to this location. When execution returns, normal end (E_OK) or an error
code is set in R0.

When using SH-2A or SH2A-FPU, you can choose "Only for service call" as CFG_TBR in the
configurator. In this case, the TBR register is used for calling kernel. In most cases, a service
call can be called using TBR register from an assembly-language program, as shown in.
Displacement must be specified as #INDEX_XXX_XXX, where XXX_XXX is the service call
name in uppercase characters.

Section3 Service Calls

Rev.6.00 67
REJ10B0060-0600

 .INCLUDE “kernel.inc” ---------- (a)

_task:

;......

 MOV.L #1,R4 ------------------ (b)

 JSR/N @@(INDEX_ACT_TSK,TBR) -- (c)

 NOP
 ; ------------------------- (d)

Figure 3.2 Example of Service Call using TBR Register (SH-2A, SH2A-FPU)

(a) Standard header file kernel.inc is included.

(b) Parameters must be specified.

(c) Service call function is called.

(d) After service call processing, execution returns to the address specified by the PR register
except for the service calls that do not return to the calling program. In this example,
execution returns to this location. When execution returns, normal end (E_OK) or an error
code is set in R0.

3.2.3 Guarantee of Register Contents after Issuing Service Call

Some registers guarantee the contents after a service call is issued but the others do not. This
rule is based on that of the Renesas C compiler. The details are shown below.

Table 3.3 Guarantee of Register Contents after Issuing Service Call

Register Register State after Service Call Returned

SR, R8 to R15, PR, GBR,
MACH, MACL

The register contents will be guaranteed. IMASK bits in the SR
register are updated when a service call chg_ims, ichg_ims,
loc_cpu, iloc_cpu, unl_cpu, or iunl_cpu is called.

R0 Normal end (E_OK) or an error code is set.

R1 to R7 The register contents will be guaranteed only when a service call
is clearly shown as a return parameter.

For SH2-DSP and SH3-
DSP and SH4AL-DSP:

DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0,
X1, Y0, Y1

The register contents will be guaranteed in the following situation.
• A service call is issued from a task with TA_COP0 attribute or
task exception processing routine
• A service call is issued in a state mentioned in the note on the
following page

For SH-4 and SH-4A:

FPSCR

The register contents will be guaranteed.

Section3 Service Calls

Rev.6.00 68
REJ10B0060-0600

Table 3.3 Guarantee of Register Contents after Issuing Service Call (cont)

Register Register State after Service Call Returned

For SH-4 and SH-4A:

FR0 to FR11
(DR0 to DR10, FV0 to FV8)

The register contents will not be guaranteed.

For SH-4 and SH-4A:

FR12 to FR15
(DR12 to DR14, FV12),
FPUL

The register contents will be guaranteed in the following situation.

(1) When FR in the FPSCR register = 0
• A service call is issued from a task with TA_COP1 attribute
or task exception processing routine
• A service call is issued in a state mentioned in the note
below

(2) When FR in the FPSCR register = 1
• A service call is issued from a task with TA_COP2 attribute
or task exception processing routine
• A service call is issued in a state mentioned in the note
below

For SH-4 and SH-4A:

XF0 to XF15
(XD0 to XD14, XMTRX)

The register contents will be guaranteed in the following situation.

(1) When FR in the FPSCR register = 0
• A service call is issued from a task with TA_COP2 attribute
or task exception processing routine
• A service call is issued in a state mentioned in the note
below

(2) When FR in the FPSCR register = 1
• A service call is issued from a task with TA_COP1 attribute
or task exception processing routine
• A service call is issued in a state mentioned in the note
below

For SH-2A and SH2A-FPU:

TBR

If "Use for only service call" or "Task context" is selected as
CFG_TBR, the TBR is guaranteed.

Refer to section 4.2.8, TBR Register (SH-2A, SH2A-FPU).

For SH2A-FPU:

FR0 to FR11

The register contents will not be guaranteed.

For SH2A-FPU:

FPSCR, FPUL,

FR12 to FR15

The register contents will be guaranteed in the following situation.
• A service call is issued from a task with TA_COP1 attribute or
task exception processing routine
• A service call is issued in a state mentioned in the note below

Note: Non-task context or dispatch-disabled state

For details on guarantee of the register contents when creating tasks and handlers, refer to
section 4, Application Program Creation.

Section3 Service Calls

Rev.6.00 69
REJ10B0060-0600

3.2.4 Return Value of Service Call and Error Code

For service calls that have return codes, a positive value or 0 (E_OK) indicates normal end, and
a negative value indicates an error code. However, for service calls that have a BOOL-type
return value, this is not the case. The meaning of the return value at normal end differs
depending on the service call; however, only E_OK is returned at normal end for many service
calls.

An error code consists of main error codes (lower 8 bits) and sub error codes (upper bits above
lower 8 bits). The sub error code of this kernel is always set to –1.

The following macros are defined in the standard header itron.h. The SERCD macro of this
kernel always returns –1 except for normal end.

• ER mercd = MERCD(ER ercd); returns the main error code from the error code

• ER sercd = SERCD(ER ercd); returns the sub error code from the error code

If a service call is issued while it is not selected through the configurator, error E_NOSPT is
returned regardless of the return value type of the service call.

3.2.5 System State and Service Calls

Whether a service call can be called or not depends on the system state (refer to section 2.4,
System State).

(1) Task Context and Non-Task Context

Service calls can be classified as dedicated to task context, dedicated to the non-task context,
and service calls that can be called from all contexts.

(a) The names of service calls that can be called from non-task context start with “i”.

(b) Following service calls can be called from all context.

• sns_tex
• sns_ctx
• sns_loc
• sns_dsp
• sns_dpn
• vsta_knl, ivsta_knl *
• vsys_dwn, ivsys_dwn *
• vini_cac, ivini_cac *
• vclr_cac, ivclr_cac *
• vfls_cac, ivfls_cac *
• vinv_cac, ivinv_cac *

Section3 Service Calls

Rev.6.00 70
REJ10B0060-0600

 * Although the names of these service calls start with “i”, these service calls can be
 called from task context.

(c) Service calls other than the above are service calls that are dedicated to task context.

Normal system operation cannot be guaranteed when a service call is called from a context
that differs from the above description. However, in special cases, for example when a
service call that shifts to the WAITING state is called from non-task context, an E_CTX
error is returned.

(2) Dispatch-disabled/-enabled State

All service calls can be called from dispatch-enabled state. Some service calls that shift to
WAITING state cannot be called from dispatch-disabled state. When those service calls are
called from dispatch-disabled state, an E_CTX error is returned.

(3) CPU-locked/-unlocked State

All service calls can be called from the CPU-unlocked state. Service calls that can be called
from the CPU-locked state are listed below. Normal system operation cannot be guaranteed
when service calls other than these are called from the CPU-locked state. When service calls
that shift to the WAITING state are called, an E_CTX error is returned.

⎯ ext_tsk
⎯ exd_tsk
⎯ sns_tex
⎯ loc_cpu, iloc_cpu
⎯ unl_cpu, iunl_cpu
⎯ sns_ctx
⎯ sns_loc
⎯ sns_dsp
⎯ sns_dpn
⎯ vsta_knl, ivsta_knl
⎯ vsys_dwn, ivsys_dwn

Section3 Service Calls

Rev.6.00 71
REJ10B0060-0600

(4) CPU Exception Handler

Service calls that can be called from the CPU exception handler are listed below. Normal
system operation cannot be guaranteed when service calls other than these are called from
the CPU exception handler. When service calls that shift to the WAITING state are called,
an E_CTX error is returned.

⎯ sns_tex
⎯ sns_ctx
⎯ sns_loc
⎯ sns_dsp
⎯ sns_dpn
⎯ get_tid, iget_tid
⎯ ras_tex, iras_tex
⎯ vsta_knl, ivsta_knl
⎯ vsys_dwn, ivsys_dwn

(5) Before Kernel Activation

The following service calls can be called even before kernel activation (vsta_knl service
call).

⎯ vsta_knl, ivsta_knl
⎯ vsys_dwn, ivsys_dwn
⎯ vini_cac, ivini_cac
⎯ HI7700/4: vclr_cac, ivclr_cac
⎯ HI7700/4: vfls_cac, ivfls_cac
⎯ HI7700/4: vinv_cac, ivinv_cac

Section3 Service Calls

Rev.6.00 72
REJ10B0060-0600

3.2.6 Service Calls not in the μITRON4.0 Specification

Service calls whose name start with “v” or “iv”, such as vscr_tsk and ivbgn_int, are service calls
that are not defined in the µITRON4.0 specification.

The following "ixxx_yyy"-format service calls (starting with "i'") are not defined in the
µITRON4.0 specification. They are provided to enable the "xxx_yyy"-format service calls
corresponding to the following service calls to be issued in a non-task context because the
"xxx_yyy"-format service calls are defined to be issued only in a task context in the µITRON4.0
specification.

icre_tsk, iacre_tsk, ista_tsk, ichg_pri, iget_pri, iref_tsk, iref_tst, isus_tsk, irsm_tsk,
frsm_tsk, idef_tex, iref_tex, icre_sem, iacre_sem, ipol_sem, iref_sem, icre_flg, iacre_flg,
iclr_flg, ipol_flg, iref_flg, icre_dtq, iacre_dtq, iref_dtq, icre_mbx, iacre_mbx, isnd_mbx,
iprcv_mbx, iref_mbx, icre_mbf, iacre_mbf, ipsnd_mbf, iref_mbf, icre_mpf, iacre_mpf,
ipget_mpf,
iref_mpf, icre_mpl, iacre_mpl, ipget_mpl, iref_mpl, iset_tim, iget_tim, icre_cyc, iacre_cyc,
ista_cyc, istp_cyc, iref_cyc, iacre_alm, iacre_alm, ista_alm, istp_alm, iref_alm, ista_ovr,
istp_ovr, iref_ovr, idef_inh, ichg_ims, iget_ims, idef_svc, ical_svc, idef_exc, iref_cfg,
iref_ver

Section3 Service Calls

Rev.6.00 73
REJ10B0060-0600

3.3 Service Call Description Form
Service calls are described in details as shown below in this section.

Section Brief function description (Service call name)

• C language API Service call calling format

• Parameter
 Type Parameter Register Meaning of
 name parameter
 ⋅ ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅ ⋅

• Return Parameter
 Type Parameter Register Meaning of
 name parameter
 ⋅ ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅ ⋅

• Return Code/Error Code
 Mnemonic [Type] Meaning of
 error code
 ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅

 Assembler API is also described
 only for service calls that are not
 in accordance with section 3.2.2,
 Assembly Language API.

• Packet Structure
 Packet state described as below when used by a service call.
 typedef struct t_rsem {
 ID wtskid; +0 2 Wait task ID
 UINT semcnt; +4 4 Current semaphore count
 } T_RSEM ;

 Description of the Description of member
 structure in C language
 Offset from the Member size
 beginning of a
 packet

• Description of Attribute
 The following symbols are used for description of attribute.
 [A] indicates specification of A can be omitted.
 (A || B) indicates selection of A or B.

 Error Code Type. Note, when the conditions
 which cause [p] type errors occurred in the
 configuration which does not check
 CFG_PARCHK, the system operation is not
 guaranteed. And the cases of [p] type errors
 are not detected when [k] type errors are
 detected.
 [k] indicates an error that is always detected.
 [p] indicates an error that is detected only when
 the kernel with parameter check function
 (CFG_PARCHK) is installed.

 Register
 "R4", "R5" indicate registers.
 "@R15", "@(4,R15) indicate stack.
 "@(4,R15) indicates the contents of
 address R15+4.

Figure 3.3 Service Call Description Form

Section3 Service Calls

Rev.6.00 74
REJ10B0060-0600

3.4 Task Management
Task-Management Service Calls: Tasks are managed by the service calls listed in table 3.4.

Table 3.4 Service Calls for Task Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_tsk [s] T/E/D/U

icre_tsk

Creates task using dynamic stack

N/E/D/U

vscr_tsk [s] T/E/D/U

ivscr_tsk

Creates task using static stack

N/E/D/U

acre_tsk T/E/D/U

iacre_tsk

Creates task and assigns task ID automatically

N/E/D/U

del_tsk Deletes task T/E/D/U

act_tsk [S] T/E/D/U

iact_tsk [S]

Initiates task

N/E/D/U

can_act [S] T/E/D/U

ican_act

Cancels task initiation request

N/E/D/U

sta_tsk T/E/D/U

ista_tsk

Initiates task and specifies start code

N/E/D/U

ext_tsk [S] Exits current task T/E/D/U/L

exd_tsk [S] Exits and deletes current task T/E/D/U/L

ter_tsk [S] Forcibly terminates a task T/E/D/U

chg_pri [S] T/E/D/U

ichg_pri

Changes task priority

N/E/D/U

get_pri [S] T/E/D/U

iget_pri

Refers to task priority

N/E/D/U

ref_tsk T/E/D/U

iref_tsk

Refers to task state

N/E/D/U

ref_tst T/E/D/U

iref_tst

Refers to task state (simple version)

N/E/D/U

vchg_tmd Changes task execution mode T/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 75
REJ10B0060-0600

Task Management Specifications: Task management specifications are listed in table 3.5.

Table 3.5 Task Management Specifications

Item Description

Task ID 1 to CFG_MAXTSKID (1023 max.)

Task priority 1 to CFG_MAXTSKPRI* (255 max.)

Maximum count of task initiation
request

15

Task attribute TA_HLNG: The task is written in a high-level language
TA_ASM: The task is written in assembly language
TA_ACT: The task makes a transition to the READY state
 after the task has been created

[HI7000/4, HI7700/4] TA_COP0: The task uses the DSP

[HI7000/4] TA_COP1: The task uses the FPU

[HI7750/4] TA_COP1: The task uses bank 0 in the FPU

 TA_COP2: The task uses bank 1 in the FPU

Note: This value is the same as TMAX_TPRI defined in kernel_macro.h.

Section3 Service Calls

Rev.6.00 76
REJ10B0060-0600

3.4.1 Create Task

<Using Dynamic Stack>

(cre_tsk, icre_tsk)

(acre_tsk, iacre_tsk: Assign Task ID Automatically)

<Using Static Stack>

(vscr_tsk, ivscr_tsk)

C-Language API:
 ER ercd = cre_tsk(ID tskid, T_CTSK *pk_ctsk);

 ER ercd = icre_tsk(ID tskid, T_CTSK *pk_ctsk);

 ER_ID tskid = acre_tsk(T_CTSK *pk_ctsk);

 ER_ID tskid = iacre_tsk(T_CTSK *pk_ctsk);

 ER ercd = vscr_tsk(ID tskid, T_CTSK *pk_ctsk);

 ER ercd = ivscr_tsk(ID tskid, T_CTSK *pk_ctsk);

Parameters:
 <cre_tsk, icre_tsk, vscr_tsk, ivscr_tsk>

 ID tskid R4 Task ID

 T_CTSK *pk_ctsk R5 Pointer to the packet where task creation

information is stored

 <acre_tsk, iacre_tsk>

 T_CTSK *pk_ctsk R4 Pointer to the packet where task creation

information is stored

Return Parameters:
 <cre_tsk, icre_tsk, vscr_tsk, ivscr_tsk>

 ER ercd R0 Normal end (E_OK) or error code

 < acre_tsk, iacre_tsk >

 ER_ID tskid R0 Created task ID (a positive value) or error

code

Packet Structure:
 typedef struct t_ctsk{

 ATR tskatr; 0 4 Task attribute

 VP_INT exinf; +4 4 Extended information

 FP task; +8 4 Task start address

 PRI itskpri; +12 2 Priority at task initiation

 SIZE stksz; +16 4 Task stack size

 VP stk; +20 4 Start address of task stack area

 }T_CTSK;

Section3 Service Calls

Rev.6.00 77
REJ10B0060-0600

Error Codes:
 E_NOMEM [k] Insufficient memory

(Task stack area cannot be allocated in the memory)

 E_RSATR [p] Invalid attribute (tskatr is invalid)

 E_PAR [p] Parameter error (pk_ctsk is other than a multiple of four,

task is an odd address, stksz is other than a multiple of

four, stksz = 0, stksz ≥ H'80000000, itskpri ≤ 0,

itskpri > CFG_MAXTSKPRI, or stk is other than a multiple of

four if stk is not NULL)

 E_ID [p] Invalid ID number (tskid ≤ 0, tskid > CFG_MAXTSKID (cre_tsk

or icre_tsk), tskid ≤ CFG_STSTKID (cre_tsk or icre_tsk), or

tskid > CFG_STSTKID (vscre_tsk or ivscre_tsk))

 E_OBJ [k] The object state is invalid

(The task specified by tskid is not in the DORMANT state or

the current task is specified)

 E_NOID [k] No ID available

Function:

The service calls cre_tsk, icre_tsk, acre_tsk, and iacre_tsk create tasks that use dynamic stacks
and service calls vscr_tsk and ivscr_tsk create tasks that use static stacks. The created tasks
make a transition to the DORMANT state when the TA_ACT attribute is not specified, or to the
READY state when the TA_ACT attribute is specified.

The processing that is performed at task creation is listed in table 3.6.

Table 3.6 Processing to be Performed at Task Creation

Contents

Clears the number of task initiation request queues

Sets the state for which the task exception routine is not defined

Sets the state for which the upper-limit processor time is not specified

Assigns the stack (for cre_tsk and acre_tsk)

Section3 Service Calls

Rev.6.00 78
REJ10B0060-0600

The following describes the meaning of the parameters.

tskid: The service calls vscr_tsk and ivscr_tsk create tasks that use static stacks. 1 to
CFG_STSTKID can be specified for tskid. The service calls cre_tsk and icre_tsk create tasks
that use dynamic stacks. CFG_STSTKID + 1 to CFG_MAXTSKID can be specified for tskid.
The service calls acre_tsk and iacre_tsk detect an undefined task ID and create a task for the task
ID with the contents specified by pk_ctsk and return the ID as a return parameter. The service
calls acre_tsk and iacre_tsk create tasks that use dynamic stacks. The task ID range to be
detected is CFG_STSTKID + 1 to CFG_MAXTSKID.

tskatr: The parameter tskatr specifies the coprocessor and language in which the task was
written in the following format. See table 3.7 for details.

tskatr:= ((TA_HLNG || TA_ASM) [| TA_ACT] [| TA_COP0] [| TA_COP1] [|
TA_COP2])

Table 3.7 Task Attributes (tskatr)

tskatr Code Description

TA_HLNG H'00000000 The task is written in a high-level language

TA_ASM H'00000001 The task is written in assembly language

TA_ACT H'00000002 The task makes a transition to the READY state after
the task has been created

TA_COP0 H'00000100 The task uses the DSP (HI7000/4, HI7700/4)

TA_COP1 H'00000200 The task uses the FPU (HI7000/4)

The task uses bank 0 in the FPU (HI7750/4) *

TA_COP2 H'00000400 The task uses bank 1 in the FPU (HI7750/4) *

Note The initial value of the FPSCR register is H'00040001 (bank 0).

When TA_ACT attribute is specified, extended information (exinf) is passed to the task as a
parameter.

By specifying TA_COPn attribute, the registers of the selected coprocessor can be saved as task
context. Note that the TA_COPn attribute is not in the µITRON4.0 specification.

exinf: The parameter exinf can be widely used by the user, for example, to set information
concerning tasks to be created.

task: Specify the task start address.

itskpri: Specify 1 to CFG_MAXTSKPRI as the task priority at initiation.

Section3 Service Calls

Rev.6.00 79
REJ10B0060-0600

stksz: Parameter stksz is valid only for service calls cre_tsk, icre_tsk, acre_tsk, and iacre_tsk
and specifies the stack size of the task to be created. A multiple of four can be specified for the
stack size.

Note that stksz has no meaning to service calls vscr_tsk and ivscr_tsk because each service call
creates a task that uses the static stack. The parameter stksz is ignored in kernel processing.

stk: stk is effective in cre_tsk, icre_tsk, acre_tsk, and iacre_tsk service calls.

When NULL is specified as stk, the kernel allocates a stack in the dynamic stack area
(CFG_TSKSTKSZ). After the task has been created, the dynamic stack area size will decrease
by an amount given by the following expression:

Decrease in size = stksz + 16 bytes

The stack area address allocated by application can be specified as stk. In this case, allocate a
stack area for the size specified by stksz and specify the start address of the area.

The service calls vscr_tsk and ivscr_tsk are functions original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 80
REJ10B0060-0600

3.4.2 Delete Task (del_tsk)

C-Language API:
 ER ercd = del_tsk(ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid ≤ 0 or tskid > CFG_MAXTSKID)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object state is invalid (Task indicated by tskid is not in

DORMANT state or the current task is specified)

 E_CTX [k] Context error (Called from the disabled system state)

Function:

The service call del_tsk deletes the task indicated by the parameter tskid. The deleted task makes
a transition to the NON-EXISTENT state.

If a dynamic stack is used by the task specified by tskid, the stack is returned to the dynamic
stack area. As a result, the free dynamic stack area size increases by an amount given by the
following expression:

Increase in size = (stksz specified at task creation) + 16 bytes

Section3 Service Calls

Rev.6.00 81
REJ10B0060-0600

3.4.3 Initiate Task (act_tsk, iact_tsk)

C-Language API:
 ER ercd = act_tsk(ID tskid);

 ER ercd = iact_tsk(ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid ≤ 0, tskid > MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_QOVR [k] Queuing overflow (actcnt > 15)

Function:

Each service call initiates the task indicated by the parameter tskid. The initiated task makes a
transition from the DORMANT state to the READY state.

The processing that is performed during task activation is listed in table 3.8.

Table 3.8 Processing to be Performed during Task Initiation

Contents

Initiates base priority and current priority of the task

Clears the number of start request queues

Clears the number of suspend request nestings

Clears reserved exception factors

Sets task exception processing disabled state

Clears flag patterns of the task event flag

By specifying tskid = TSK_SELF (0), the current task is specified.

Extended information of the task specified at task creation will be passed to the task as the
parameter.

If the static stack of the task indicated by tskid is not being used by any task when the service
calls act_tsk and iact_tsk are called (tskid = 1 to CFG_STSTKID), the task indicated by tskid
occupies the shared stack and shifts to the READY state.

If the stack is being used by another task, the task indicated by tskid shifts to the WAITING
state and is placed in the shared-stack wait queue since the stack area cannot be used. The wait
queue is managed on a first-in first-out (FIFO) basis.

Section3 Service Calls

Rev.6.00 82
REJ10B0060-0600

When the task is not in the DORMANT state, up to 15 task initiation requests from the service
calls act_tsk and iact_tsk can be stored.

3.4.4 Cancel Task Initiation Request (can_act, ican_act)

C-Language API:
 ER_UINT actcnt = can_act(ID tskid);

 ER_UINT actcnt = ican_act(ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER_UINT actcnt R0 Number of cached initiation requests (positive

value or 0), or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid is not created)

Function:

The number of initiation requests queued for the task specified by tskid is determined, the result
is returned as the return parameter, and at the same time the initiation requests are all cancelled.

By specifying tskid=TSK_SELF(0), the current task is specified.

A task in a DORMANT state can also be specified; in this case the return parameter is 0.

Section3 Service Calls

Rev.6.00 83
REJ10B0060-0600

3.4.5 Start Task (Start Code Specified) (sta_tsk, ista_tsk)

C-Language API:
 ER ercd = sta_tsk(ID tskid, VP_INT stacd);

 ER ercd = ista_tsk(ID tskid, VP_INT stacd);

Parameters:
 ID tskid R4 Task ID

 VP_INT stacd R5 Task initiation code

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid ≤ 0, tskid > CFG_MAXTSKID)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object state is invalid (The task specified by tskid is not

in the DORMANT state or the current task is specified)

Function:

Each service call initiates the task indicated by the parameter tskid. The initiated task makes a
transition from the DORMANT state to the READY state. At this time, the processing to be
performed during task initiation (table 3.8) is performed. The task initiation code indicated by
the parameter stacd will be passed to the initiated task as the parameter.

If the static stack of the task indicated by tskid is not being used by any task when the service
calls sta_tsk and ista_tsk are called, the task indicated by tskid occupies the shared stack and
shifts to the READY state.

If the stack is being used by another task, the task indicated by tskid shifts to the WAITING
state and is placed in the shared-stack wait queue since the stack area cannot be used. The wait
queue is managed on a first-in first-out (FIFO) basis.

Section3 Service Calls

Rev.6.00 84
REJ10B0060-0600

3.4.6 Exit Current Task, Exit and Delete Current Task (ext_tsk), (exd_tsk)

C-Language API:
 void ext_tsk(void);

 void exd_tsk(void);

Parameters:
 None

Return Parameters:
 The service calls ext_tsk and exd_tsk do not return to the current task.

However, if the service call ext_tsk or exd_tsk is called without being

installed at system creation, error code E_RSFN is set in R0 and returned.

In addition, the service calls ext_tsk and exd_tsk may generate the following

error, and in this case, control is passed to the system down routine.

 E_CTX [k] Context error (Called from disabled system state)

Function:

The service call ext_tsk exits the current task normally. After the execution of the service call
ext_tsk, the current task makes a transition from the RUNNING state to the DORMANT state.
When initiation request is queued, the service call ext_tsk exits the current task and then restarts
the task.

The processing that is performed at task termination is listed in table 3.9.

Table 3.9 Processing to be Performed at Task Termination

Contents

Unlocks the mutex locked by the task

Releases upper-limit processor time

The service call exd_tsk exits the current task normally and deletes it. After the execution of the
service call exd_tsk, the current task makes a transition from the RUNNING state to the NON-
EXISTENT state.

Service calls ext_tsk and exd_tsk do not release resources other than mutexes (such as
semaphores and memory blocks) acquired before the task is exited. Therefore, the user must call
service calls to release resources before exiting the task.

Section3 Service Calls

Rev.6.00 85
REJ10B0060-0600

If the task that issues the service calls ext_tsk and exd_tsk shares the stack with other tasks, the
task at the head of the stack wait queue is removed and WAITING state is cancelled. At this
time, the processing to be performed during task initiation (table 3.8) is performed for the task
that is removed from the stack wait queue and the task makes a transition to the READY state.

If a dynamic stack is used by the task that called the service call exd_tsk, the stack is returned to
the dynamic stack area. As a result, the free dynamic stack area size increases by an amount
given by the following expression:

Increase in size = (stksz which is specified at creation) + 16 bytes

Service calls ext_tsk and exd_tsk can be called while task dispatch is disabled or the CPU is
locked. After either of the service calls is called, the dispatch-disabled state or CPU-locked state
is cancelled.

Note that when the task returns from the start function, the same operation as for service call
ext_tsk will be performed.

Section3 Service Calls

Rev.6.00 86
REJ10B0060-0600

3.4.7 Terminate Task (ter_tsk)

C-Language API:
 ER ercd = ter_tsk(ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid ≤ 0 or tskid > CFG_MAXTSKID)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object state is invalid

(Task indicated by tskid is in the DORMANT state)

 E_ILUSE [k] Illegal use of service call

(The current task is specified as the object task)

 E_CTX [k] Context error (Called from disabled system state)

Function:

The service call ter_tsk forces a task specified by tskid to terminate. The terminated task enters
the DORMANT state. At this time, the processing shown in table 3.9 is performed.

When the initiation request is queued, the processing to be performed during task initiation is
performed, and the target task enters the READY state.

A request from a task to force another task to terminate is delayed in the following cases:

• If the task specified by tskid is masking requests from other tasks to force tasks to terminate
by calling service call vchg_tmd

The service call ter_tsk does not release resources other than the mutexes (such as semaphores
and memory blocks) acquired before the task is terminated. Therefore, the user must call service
calls to release resources before calling the service call ter_tsk.

If the task specified by tskid shares the stack with other tasks, the task at the head of the stack
wait queue is removed and released from the WAITING state. At this time, the processing to be
performed during task initiation (table 3.8) is performed for the task that is removed from the
stack wait queue and the task makes a transition to the READY state.

Section3 Service Calls

Rev.6.00 87
REJ10B0060-0600

3.4.8 Change Task Priority (chg_pri, ichg_pri)

C-Language API:
 ER ercd = chg_pri(ID tskid, PRI tskpri);

 ER ercd = ichg_pri(ID tskid, PRI tskpri);

Parameters:
 ID tskid R4 Task ID

 PRI tskpri R5 Base priority of task

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tskpri < 0 or tskpri > CFG_MAXTSKPRI)

 E_ID [p] Invalid ID number (tskpri < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task specified by tskid does not exist)

 E_ILUSE [k] Illegal use of service call (Upper-limit priority is

exceeded)

 E_OBJ [k] Object state is invalid (Task is in the DORMANT state)

Function:

Each service call changes the base task priority specified by the parameter tskid to the value
specified by the parameter tskpri. The current task priority is also changed. By specifying tskid =
TSK_SELF (0), the current task can also be specified.

Specifying tskpri = TPRI_INI (0) returns the task priority to the initial priority that was specified
at task creation.

A priority changed by the service calls is valid until the task is terminated or until the service
calls are called again. When a task makes a transition to the DORMANT state, the task priority
before termination becomes invalid and returns to the initial task priority specified at task
creation.

If the task specified by tskid is in the WAITING state and TA_TPRI is specified for the object
attribute, the wait queue can be changed by the service calls and as a result, the task at the head
of the wait queue may be released from the WAITING state.

If the base priority specified in the parameter tskpri is higher than the upper-limit priority of one
of the mutexes when the object task locks or waits to lock the mutexes with the TA_CEILING
attribute, E_ILUSE is returned.

Section3 Service Calls

Rev.6.00 88
REJ10B0060-0600

3.4.9 Refer to Task Priority (get_pri, iget_pri)

C-Language API:
 ER ercd = get_pri(ID tskid, PRI *p_tskpri);

 ER ercd = iget_pri(ID tskid, PRI *p_tskpri);

Parameters:
 ID tskid R4 Task ID

 PRI *p_tskpri R5 Pointer to the area where the current

priority of the object task is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 PRI *p_tskpri R5 Pointer to the area where the current

priority of the object task is stored

Error Codes:
 E_PAR [p] Parameter error (p_tskpri is not even)

 E_ID [p] Invalid ID number (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task specified by tskid does not exist)

 E_OBJ [k] Object status is invalid (Task is in the DORMANT state)

Function:

Each service call refers to the current priority of the task specified by the parameter tskid, and
returns it to area indicated by parameter p_tskpri. By specifying tskid = TSK_SELF (0), the
current task is specified.

Section3 Service Calls

Rev.6.00 89
REJ10B0060-0600

3.4.10 Refer to Task State (ref_tsk, iref_tsk)

C-Language API:
 ER ercd = ref_tsk(ID tskid , T_RTSK *pk_rtsk);

 ER ercd = iref_tsk(ID tskid , T_RTSK *pk_rtsk);

Parameters:
 ID tskid R4 Task ID

 T_RTSK *pk_rtsk R5 Pointer to the packet where the task state is

to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RTSK *pk_rtsk R4 Pointer to the packet where the task state is

stored

Packet Structure:
 typedef struct t_rtsk {

 STAT tskstat; +0 4 Task state

 PRI tskpri; +4 2 Current priority of the task

 PRI tskbpri; +6 2 Base priority of the task

 STAT tskwait; +8 4 Wait cause

 ID wobjid; +12 2 Wait object ID

 TMO lefttmo; +16 4 Time to timeout

 UINT actcnt; +20 4 Number of queued initiation requests

 UINT wupcnt; +24 4 Number of queued wakeup requests

 UINT suscnt; +28 4 Suspend request nest count

 UINT tskmode +32 4 Task execution mode

 UINT tflptn; +36 4 Current task event flag value

 }T_RTSK;

Error Codes:
 E_PAR [p] Parameter error (pk_rtsk is other than a multiple of four)

 E_ID [p] Invalid ID number (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

Function:

Each service call refers to the state of the task indicated by the parameter tskid, and then returns
it to the area indicated by parameter pk_rtsk. By specifying tskid = TSK_SELF(0), the current
task is specified.

The following values are returned to the area indicated by pk_rtsk. Note that data with an
asterisk (*) is invalid when the task is in the DORMANT state. If referenced information is
related to a function that is not installed, the referenced information will be undefined.

⎯ tskstat

Section3 Service Calls

Rev.6.00 90
REJ10B0060-0600

Indicates the current task state. The following values are returned.

Table 3.10 Current Task State (tskstat)

tskstat Code Description

TTS_RUN H'00000001 RUNNING state

TTS_RDY H'00000002 READY state

TTS_WAI H'00000004 WAITING state

TTS_SUS H'00000008 SUSPENDED state

TTS_WAS H'0000000c WAITING-SUSPENDED state

TTS_DMT H'00000010 DORMANT state

TTS_STK H'40000000 Shared-stack WAITING state

⎯ tskpri
Indicates the current task priority. When the task is in the DORMANT state, the initial
priority of the task is returned.

⎯ tskbpri
Indicates the base priority of the task. When the task is in the DORMANT state, the
initial priority of the task is returned.

Section3 Service Calls

Rev.6.00 91
REJ10B0060-0600

⎯ tskwait*
Valid only when TTS_WAI or TTS_WAS is returned to tskstat and the following values
are returned.

Table 3.11 Cause of WAITING State (tskwait)

tskwait Code Description

TTW_SLP H'00000001 Shifted to the WAITING state by slp_tsk or tslp_tsk

TTW_DLY H'00000002 Shifted to the WAITING state by dly_tsk

TTW_SEM H'00000004 Shifted to the WAITING state by wai_sem or
twai_sem

TTW_FLG H'00000008 Shifted to the WAITING state by wai_flg or twai_flg

TTW_SDTQ H'00000010 Shifted to the WAITING state by snd_dtq or
tsnd_dtq

TTW_RDTQ H'00000020 Shifted to the WAITING state by rcv_dtq or trcv_dtq

TTW_MBX H'00000040 Shifted to the WAITING state by rcv_mbx or
trcv_mbx

TTW_MTX H'00000080 Shifted to the WAITING state by loc_mtx or
tloc_mtx

TTW_SMBF H'00000100 Shifted to the WAITING state by snd_mbf or
tsnd_mbf

TTW_RMBF H'00000200 Shifted to the WAITING state by rcv_mbf or
trcv_mbf

TTW_MPF H'00002000 Shifted to the WAITING state by get_mpf or
tget_mpf

TTW_MPL H'00004000 Shifted to the WAITING state by get_mpl or
tget_mpl

TTW_TFL H'00008000 Shifted to the WAITING state by vwai_tfl or vtwai_tfl

⎯ wobjid*
Valid only when TTS_WAI or TTS_WAS is returned to tskstat and the waiting target
object ID is returned.

⎯ lefttmo*
The time until the target task times out is returned. Note that when the target task is in the
WAITING state according to the service call dly_tsk, the value is undefined.

⎯ actcnt*
The current initiation request queue count is returned.

⎯ wupcnt*
The current wakeup request queue count is returned.

⎯ suscnt*
The current suspend request nesting count is returned.

Section3 Service Calls

Rev.6.00 92
REJ10B0060-0600

⎯ tskmode*
The task execution mode set in the service call vchg_tmd, and whether there is a request
that is delayed by the service call vchg_tmd, are returned.

The following value is returned to tskmode.

Table 3.12 Task Execution Mode (tskmode)

tskmode Code Description

ECM_SUS H'00000001 A suspend request is masked

ECM_TER H'00000002 A forcible termination request is masked

PND_SUS H'00000004 A suspend request is delayed

PND_TER H'00000008 A forcible termination request is delayed

⎯ tflptn*
The current task event flag value is returned. However, if the task event flag function was
not installed at system creation, an undefined value is returned.

tskmode and tflptn are members not defined in the μITRON4.0 specification.

Section3 Service Calls

Rev.6.00 93
REJ10B0060-0600

3.4.11 Refer to Task State (Simple Version) (ref_tst, iref_tst)

C-Language API:
 ER ercd = ref_tst(ID tskid , T_RTST *pk_rtst);

 ER ercd = iref_tst(ID tskid , T_RTST *pk_rtst);

Parameters:
 ID tskid R4 Task ID

 T_RTST *pk_rtst R5 Start address of the packet where the task

state is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RTST *pk_rtst R5 Start address of the packet where the task

state is stored

Packet Structure:
 typedef struct t_rtst {

 STAT tskstat; +0 4 Task state

 STAT tskwait; +4 4 Wait cause

 }T_RTST;

Error Codes:
 E_PAR [p] Parameter error (pk_rtsk is other than a multiple of four)

 E_ID [p] Invalid ID number (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

Function:

Each service call refers to the state and the case of WAITING state of the task indicated by the
parameter tskid, and then returns it to the area indicated by parameter pk_rtst. By specifying
tskid = TSK_SELF (0), the current task can be specified.

The following values are returned to the area indicated by pk_rtst. Note that data with an asterisk
(*) is invalid when the task is in the DORMANT state. If referenced information is related to a
function that is not installed, the referenced information will be undefined.

Section3 Service Calls

Rev.6.00 94
REJ10B0060-0600

⎯ tskstat
Indicates the current task state. The following values are returned.

Table 3.13 Current Task State (tskstat)

tskstat Code Description

TTS_RUN H'00000001 RUNNING state

TTS_RDY H'00000002 READY state

TTS_WAI H'00000004 WAITING state

TTS_SUS H'00000008 SUSPENDED state

TTS_WAS H'0000000c WAITING-SUSPENDED state

TTS_DMT H'00000010 DORMANT state

TTS_STK H'40000000 Shared-stack WAITING state

⎯ tskwait*
Valid only when TTS_WAI or TTS_WAS is returned to tskstat and the following values
are returned.

Table 3.14 Cause of WAITING State (tskwait)

tskwait Code Description

TTW_SLP H'00000001 Shifted to the WAITING state by slp_tsk or tslp_tsk

TTW_DLY H'00000002 Shifted to the WAITING state by dly_tsk

TTW_SEM H'00000004 Shifted to the WAITING state by wai_sem or
twai_sem

TTW_FLG H'00000008 Shifted to the WAITING state by wai_flg or twai_flg

TTW_SDTQ H'00000010 Shifted to the WAITING state by snd_dtq or
tsnd_dtq

TTW_RDTQ H'00000020 Shifted to the WAITING state by rcv_dtq or trcv_dtq

TTW_MBX H'00000040 Shifted to the WAITING state by rcv_mbx or
trcv_mbx

TTW_MTX H'00000080 Shifted to the WAITING state by loc_mtx or
tloc_mtx

TTW_SMBF H'00000100 Shifted to the WAITING state by snd_mbf or
tsnd_mbf

TTW_RMBF H'00000200 Shifted to the WAITING state by rcv_mbf or
trcv_mbf

TTW_MPF H'00002000 Shifted to the WAITING state by get_mpf or
tget_mpf

TTW_MPL H'00004000 Shifted to the WAITING state by get_mpl or
tget_mpl

TTW_TFL H'00008000 Shifted to the WAITING state by vwai_tfl or vtwai_tfl

Section3 Service Calls

Rev.6.00 95
REJ10B0060-0600

3.4.12 Change Task Execution Mode (vchg_tmd)

C-Language API:
 ER ercd = vchg_tmd(UINT tmd);

Parameters:
 UINT tmd R4 Task execution mode to change

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmd is invalid)

 E_CTX [k] Context error (Called from disabled system state)

Function:

The system call tmd changes the task execution mode. The execution mode can mask requests
from other tasks as the task execution mode.

Table 3.15 Task Execution Mode (tmd)

tmd Code Description

ECM_SUS H'00000001 A suspend request is masked

ECM_TER H'00000002 A forcible termination request is masked

When the suspend request is masked, even if service calls sus_tsk and isus_tsk are called, their
requests are delayed until the mask is cancelled (with tmd = 0 specified) by the service call
vchg_tmd.

When the forced termination request is masked, even if the service call ter_tsk is called, its
request is delayed until the mask is cancelled (with tmd = 0 specified) by the service call
vchg_tmd.

In task execution mode, the state of the calling task is taken over as the task context in extended
service call routines and task exception processing routines.

Delays of suspend requests and forced termination requests can be referenced through service
calls ref_tsk and iref_tsk.

This service call is a function original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 96
REJ10B0060-0600

3.5 Task Synchronization
Task Synchronization Service Calls: The service calls for task synchronization are listed in
table 3.16.

Table 3.16 Task Synchronization Service Calls

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

slp_tsk [S] Shifts current task to the WAITING state T/E/U

tslp_tsk [S] Shifts current task to the WAITING state with timeout function T/E/U

wup_tsk [S] T/E/D/U

iwup_tsk [S]

Wakes up task

N/E/D/U

can_wup [S] T/E/D/U

ican_wup

Cancels Wakeup Task

N/E/D/U

rel_wai [S] T/E/D/U

irel_wai [S]

Forcibly cancels the WAITING state

N/E/D/U

sus_tsk [S] T/E/D/U

isus_tsk

Shifts the task to the SUSPENDED state

N/E/D/U

rsm_tsk [S] T/E/D/U

irsm_tsk

Resumes the execution of a task in the SUSPENDED state

N/E/D/U

frsm_tsk [S] T/E/D/U

ifrsm_tsk

Forcibly resumes the execution of a task in the SUSPENDED
state N/E/D/U

dly_tsk [S] Delays the current task T/E/U

vset_tfl T/E/D/U

ivset_tfl

Sets the task event flag

N/E/D/U

vclr_tfl T/E/D/U

ivclr_tfl

Clears the task event flag

N/E/D/U

vwai_tfl Waits for the task event flag T/E/U

vpol_tfl Polls and waits for the task event flag T/E/D/U

vtwai_tfl Waits for the task event flag with timeout function T/E/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

Section3 Service Calls

Rev.6.00 97
REJ10B0060-0600

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Task Synchronization Specifications: The task synchronization specifications are listed in
table 3.17.

Table 3.17 Task Synchronization Specifications

Item Description

Maximum number of task wake-up request
count

15

Maximum number of task suspend request
nesting

15

Number of task event flag bits 32 bits (lower 16 bits are reserved for future
expansion)

Initial value of task event flag Initialized as 0 at task initiation

Wait condition of task event flag Waits for a logical OR

Section3 Service Calls

Rev.6.00 98
REJ10B0060-0600

3.5.1 Sleep Task (slp_tsk, tslp_tsk)

C-Language API:
 ER ercd = slp_tsk(void);

 ER ercd = tslp_tsk(TMO tmout);

Parameters:
 <tslp_tsk>

 TMO tmout R4 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ –2)

 E_CTX [k] Context error (Called from disabled system state)

 E_TMOUT [k] Timeout

 E_RLWAI [k] WAITING state is forcibly cancelled

(rel_wai service call was issued in the WAITING state)

Function:

Each service call shifts the current task to the wake-up WAITING state. However, if wake-up
requests are queued for the current task, the wake-up request count is decremented by one and
task execution continues. The WAITING state is cancelled by the service calls wup_tsk and
iwup_tsk.

The parameter tmout specified by service call tslp_tsk specifies the timeout period. If a positive
value is specified for parameter tmout, the WAITING state is released and error code
E_TMOUT is returned when the tmout period has passed without the wait release conditions
being satisfied.

If tmout = TMO_POL (0) is specified, the task continues execution by decrementing the wake-
up request count by one if the count is a positive value. If the wake-up request count is 0, error
code E_TMOUT is returned.

If tmout = TMO_FEVR (–1) is specified, the same operation as for service call slp_tsk will be
performed. In other words, timeout will not be monitored.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

Section3 Service Calls

Rev.6.00 99
REJ10B0060-0600

3.5.2 Wakeup Task (wup_tsk, iwup_tsk)

C-Language API:
 ER ercd = wup_tsk(ID tskid);

 ER ercd = iwup_tsk(ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object status is invalid

(Task indicated by tskid is in the DORMANT state)

 E_QOVR [k] Queuing overflow (wupcnt > 15)

Function:

Each service call releases a task from the WAITING state after the task was assigned to the
WAITING state by calling the service call slp_tsk or tslp_tsk. If the target task did not enter the
WAITING state by calling the service call slp_tsk or tslp_tsk, up to 15 requests to wake up a
task can be stored.

By specifying tskid = TSK_SELF (0), the current task can be specified.

Section3 Service Calls

Rev.6.00 100
REJ10B0060-0600

3.5.3 Cancel Wakeup Task (can_wup, ican_wup)

C-Language API:
 ER_UINT wupcnt = can_wup(ID tskid);

 ER_UINT wupcnt = ican_wup(ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER_UINT wupcnt R0 Number of queued task wake-up requests (0 or

a positive value) or error code

Error Codes:
 E_ID [p] Out of ID range (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid is not created)

 E_OBJ [k] Object status is invalid

(Task indicated by tskid is in the DORMANT state)

Function:

Each service call calculates the number of wake-up requests queued for the task specified by
tskid, then returns the result as a return parameter and invalidate all of those requests.

By specifying tskid = TSK_SELF (0), the current task can be specified.

Section3 Service Calls

Rev.6.00 101
REJ10B0060-0600

3.5.4 Release WAITING State Forcibly (rel_wai, irel_wai)

C-Language API:
 ER ercd = rel_wai(ID tskid);

 ER ercd = irel_wai(ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER_UINT ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid ≤ 0 or tskid > CFG_MAXTSKID)

 E_NOEXS [k] Undefined (Task indicated by tskid is not created)

 E_OBJ [k] Object status is invalid (Task indicated by tskid is in

the DORMANT state or the current task is specified)

Function:

When the task specified by tskid is in some kind of WAITING state (not including a
SUSPENDED state or shared-stack WAITING state), it is forcibly cancelled. E_RLWAI is
returned as the error code for the task for which the WAITING state is cancelled by the service
call rel_wai or irel_wai.

If the service calls rel_wai and irel_wai are called for a task in a WAITING-SUSPENDED state,
the task enters the SUSPENDED state. Thereafter, if the service call rsm_tsk, irsm_tsk,
frsm_tsk, or ifrsm_tsk is issued and the SUSPENDED state is cancelled, E_RLWAI is returned
as the error code for the task.

To cancel the SUSPENDED state, rsm_tsk, irsm_tsk, frsm_tsk or ifrsm_tsk should be used.

Note that there is no service call to cancel shared-stack WAITING state.

Section3 Service Calls

Rev.6.00 102
REJ10B0060-0600

3.5.5 Suspend Task (sus_tsk, isus_tsk)

C-Language API:
 ER ercd = sus_tsk(ID tskid);

 ER ercd = isus_tsk(ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object status is invalid

(Task specified by tskid is in the DORMANT state)

 E_CTX [k] Context error (tskid=TSK_SELF(0) or the current task ID is

specified in a task context while dispatch is disabled)

 E_QOVR [k] Queuing overflow (suscnt > 15)

Function:

Each service call suspends execution of the task specified by tskid and shifts the task to the
SUSPENDED state. If the specified task is in the WAITING state, the task shifts to the
WAITING-SUSPENDED state.

By specifying tskid = TSK_SELF (0), the current task can be specified.

The SUSPENDED state can be cancelled by calling the service call rsm_tsk, irsm_tsk, frsm_tsk,
or ifrsm_tsk.

Requests to suspend a task by calling the service calls sus_tsk and isus_tsk are nested. Up to 15
requests can be stored.

Requests to suspend a task by calling the service calls sus_tsk and isus_tsk are delayed in the
following cases:

1. When the task specified by tskid masks the suspend request by calling the service call
vchg_tmd, the task enters the SUSPENDED state immediately after the suspend request is
cancelled by the service call vchg_tmd (by specifying tmd = 0).

2. When the task specified by tskid has called service call dis_dsp to disable task dispatch, the
task enters the SUSPENDED state immediately after task execution resumes.

Delayed requests to suspend a task can be cancelled by calling service call rsm_tsk, irsm_tsk,
frsm_tsk, or ifrsm_tsk. Therefore, tasks are suspended when there are one or more delayed
suspend requests.

Section3 Service Calls

Rev.6.00 103
REJ10B0060-0600

3.5.6 Resume Task Force, Task to Resume (rsm_tsk, irsm_tsk, frsm_tsk, ifrsm_tsk)

C-Language API:
 ER ercd = rsm_tsk(ID tskid);

 ER ercd = irsm_tsk(ID tskid);

 ER ercd = frsm_tsk(ID tskid);

 ER ercd = ifrsm_tsk(ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid < 0 or tskid > CFG_MAXTSKID)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object status is invalid (Task indicated by tskid is not

in the SUSPENDED state, task is in the DORMANT state,

or the current task is specified)

Function:

Each service call releases the task specified by parameter tskid from the SUSPENDED state.
Service calls rsm_tsk and irsm_tsk decrement, by one, the number of nested requests to suspend,
and release the task from the SUSPENDED state when the number of the nested requests
becomes 0. Service calls frsm_tsk and ifrsm_tsk modify the number of nested requests to 0, and
release the task from the SUSPENDED state. When the task is in the WAITING-SUSPENDED
state, the task is shifted to the WAITING state.

Section3 Service Calls

Rev.6.00 104
REJ10B0060-0600

3.5.7 Delay Task (dly_tsk)

C-Language API:
 ER ercd = dly_tsk(RELTIM dlytim);

Parameters:
 RELTIM dlytim R4 Delayed time

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_CTX [k] Context error (Called from disabled system state)

 E_RLWAI [k] WAITING state is forcibly cancelled

(rel_wai service call was issued in the WAITING state)

Function:

The current task is transferred from the RUNNING state to a timed WAITING state, and waits
until the time specified by dlytim has expired. When the time specified by dlytim has elapsed,
the state of the current task is returned to the READY state. The current task is put into a
WAITING state even if dlytim = 0 is specified.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for dlytim is H'ffffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

This service call differs from the service call tslp_tsk in that it terminates normally when
execution is delayed by the amount of time specified by dlytim. Further, even if a service call
wup_tsk or iwup_tsk is executed, the WAITING state is not cancelled. The WAITING state is
cancelled before the delay time has elapsed only when a service call rel_wai, irel_wai, or ter_tsk
is called.

For details on the time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 105
REJ10B0060-0600

3.5.8 Set Task Event Flag (vset_tfl, ivset_tfl)

C-Language API:
 ER ercd = vset_tfl(ID tskid, UINT setptn);

 ER ercd = ivset_tfl(ID tskid, UINT setptn);

Parameters:
 ID tskid R4 Task ID

 UINT setptn R5 Bit pattern to set

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Out of ID range (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object status is invalid

(Task specified by tskid is in the DORMANT state)

Function:

The task event flag of the task indicated by parameter tskid is ORed with the value indicated by
the parameter setptn. Note that the lower 16 bits of the bit pattern to specify in parameter setptn
must be set to 0 because the corresponding bits of the event flag are reserved for future
expansion.

By specifying tskid = TSK_SELF (0), the current task can be specified.

When the logical sum of the waiting pattern and the updated pattern of the task event flag is not
0, the task is released from the WAITING state and the task event flag is cleared to 0.

The service calls vset_tfl and ivset_tfl are functions original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 106
REJ10B0060-0600

3.5.9 Clear Task Event Flag (vclr_tfl, ivclr_tfl)

C-Language API:
 ER ercd = vclr_tfl(ID tskid, UINT clrptn);

 ER ercd = ivclr_tfl(ID tskid, UINT clrptn);

Parameters:
 ID tskid R4 Task ID

 UINT clrptn R5 Bit pattern to clear

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Out of ID range (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [p] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object status is invalid

(Task specified by tskid is in the DORMANT state)

Function:

The task event flag of the task indicated by the parameter tskid are ANDed with the value
indicated by parameter clrptn. Note that the lower 16 bits of the bit pattern to specify parameter
clrptn must be set to H'ffff because the corresponding bits of the event flag are reserved for
future expansion.

By specifying tskid = TSK_SELF (0), the current task can be specified.

The service calls vclr_tfl and ivclr_tfl are functions original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 107
REJ10B0060-0600

3.5.10 Wait Task Event Flag (vwai_tfl, vpol_tfl, vtwai_tfl)

C-Language API:
 ER ercd = vwai_tfl(UINT waiptn, UINT *p_tflptn);

 ER ercd = vpol_tfl(UINT waiptn, UINT *p_tflptn);

 ER ercd = vtwai_tfl(UINT waiptn, UINT *p_tflptn, TMO tmout);

Parameters:
 UINT waiptn R4 Bit pattern to wait

 UINT *p_tflptn R5 Pointer to the area where the bit pattern

when releasing the WAITING state is to be

returned

 <vtwai_tfl>

 TMO tmout R6 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 UINT *p_tflptn R5 Pointer to the area where the bit pattern

when releasing the WAITING state is stored

Error Codes:
 E_PAR [p] Parameter error (p_tflptn is other than a multiple of

four, waiptn = 0, or tmout ≤ –2)

 E_CTX [k] Context error

(Called from disabled system state)

 E_TMOUT [k] Timeout

 E_RLWAI [k] WAITING state is forcibly cancelled

(rel_wai service call was called in the WAITING state)

Function:

Each service call waits for any bit of the task event flag specified by waiptn to be set. When the
wait release condition is satisfied, the bit pattern of the task event flag is returned to the area
indicated by parameter p_tflptn. At the same time, the task event flag value is cleared to 0.

Each service call immediately terminates if any bit specified by waiptn is already set when a
service call is called. If no bit is set, the task that called service calls vwai_tfl or vtwai_tfl enters
the WAITING state. With service call vpol_tfl, error code E_TMOUT is immediately returned
in this case. Tasks are released from the WAITING state when any bits specified by waiptn are
set by the service call vset_tfl.

The task event flag value is 0 at task initiation.

In service call vtwai_tfl, the parameter tmout specifies the timeout period.

Section3 Service Calls

Rev.6.00 108
REJ10B0060-0600

If a positive value is specified for the parameter tmout, error code E_TMOUT is returned when
tmout time has passed without the wait release condition being satisfied. If tmout = TMO_POL
(0) is specified, the same operation as for the service call vpol_tfl will be performed. If tmout =
TMO_FEVR (-1) is specified, the timeout monitoring is not performed. In other words, the same
operation as for the service call vwai_tfl will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

For details on the time watch method, refer to section 2.16.4(2), Time Watch Method.

The service calls vwai_tfl, vpol_tfl, and vtwai_tfl are functions original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 109
REJ10B0060-0600

3.6 Task Exception Processing Functions
Task Exception Processing Service Calls: Task exception processing is controlled by the
service calls listed in table 3.18.

Table 3.18 Service Calls for Task Exception Processing

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_tex [s] T/E/D/U

idef_tex

Defines the task exception processing routine

N/E/D/U

ras_tex [S] T/E/D/U/C

iras_tex [S]

Requests the task exception processing

N/E/D/U/C

dis_tex [S] Disables the task exception processing T/E/D/U

ena_tex [S] Enables the task exception processing T/E/D/U

sns_tex [S] Refers to the task exception processing disabled
state

T/N/E/D/U/L/C

ref_tex T/E/D/U

iref_tex

Refers to the task exception processing state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 110
REJ10B0060-0600

Task Exception Specifications: The task exception specifications are listed in table 3.19.

Table 3.19 Task Exception Specifications

Item Description

Exception factor 32 bits

Status at task initiation • Task exception processing disabled state

• No pended exception factors

Attribute supported TA_HLNG: The task is written in a high-level language
TA_ASM: The task is written in assembly language
[HI7000/4, HI7700/4] TA_COP0: The task uses the DSP

[HI7000/4] TA_COP1: The task uses the FPU

[HI7750/4] TA_COP1: The task uses bank 0 in the FPU

 TA_COP2: The task uses bank 1 in the FPU

The task exception routine is initiated as the task context when the following conditions are
satisfied.

• Task exception processing enabled state

• Pended exception factor is not 0

• Task is in the RUNNING state

• Non-task context or the CPU exception handler is not executed

When the task returns from the task exception processing routine, the processing that is
performed before the task exception processing routine was initiated is continued. At this time,
the task enters the task exception enabled state. When the pended exception factor is not 0, the
task exception processing routine is initiated again.

Section3 Service Calls

Rev.6.00 111
REJ10B0060-0600

3.6.1 Define Task Exception Processing Routine (def_tex, idef_tex)

C-Language API:
 ER ercd = def_tex(ID tskid, T_DTEX *pk_dtex);

 ER ercd = idef_tex(ID tskid, T_DTEX *pk_dtex);

Parameters:
 ID tskid R4 Task ID

 T_DTEX *pk_dtex R5 Pointer to the packet where task exception-

processing-routine definition information is

stored

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Packet Structure
 typedef struct t_dtex{

 ATR texatr; 0 4 Task exception processing routine

attribute

 FP texrtn; +4 4 Task exception processing routine

initiation address

 }T_DTEX;

Error Codes:
 E_RSATR [p] Reserved attribute (texatr is invalid)

 E_PAR [p] Parameter error (pk_dtex is other than a multiple of four or

texrtn is an odd value)

 E_ID [p] Out of ID range (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

Function:

The task exception processing routine indicated by tskid is defined as specified by pk_dtex.

By specifying tskid = TSK_SELF(0), the current task can be specified.

The parameter texatr is specified in the following format. See table 3.20 for details.

texatr := ((TA_HLNG || TA_ASM) [|TA_COP0] [|TA_COP1] [|TA_COP2])

Section3 Service Calls

Rev.6.00 112
REJ10B0060-0600

Table 3.20 Task Exception Routine Attribute (texatr)

texatr Code Description

TA_HLNG H'00000000 The task is written in a high-level language

TA_ASM H'00000001 The task is written in assembly language

TA_COP0 H'00000100 The task uses the DSP (HI7000/4, HI7700/4)

TA_COP1 H'00000200 Uses the FPU (HI7000/4)

Uses bank 0 in the FPU (HI7750/4) *

TA_COP2 H'00000400 Uses bank 1 in the FPU (HI7750/4). *

Note The initial value of the FPSCR register is H'00040001 (bank 0).

Through specification of a TA_COPn attribute, the relevant coprocessor registers are also saved
as the context of the task exception processing routine. Note that the TA_COPn attribute is not
in the μITRON4.0 specifications.

texrtn specifies the start address of the task exception processing routine. When, in a service call
def_tex or idef_tex, pk_dtex = NULL(0) is specified, the definition of the task exception
processing routine for tskid is cancelled. At this time the task pended exception factor is cleared
to 0, and the task is transferred to the task exception processing disabled state.

If a task exception processing routine has already been defined, the previous definition is
cancelled and is replaced with the new definition. At this time, pended exception factors are not
cleared and task exception processing is not disabled.

Section3 Service Calls

Rev.6.00 113
REJ10B0060-0600

3.6.2 Request Task Exception Processing (ras_tex, iras_tex)

C-Language API:
 ER ercd = ras_tex(ID tskid, TEXPTN rasptn);

 ER ercd = iras_tex(ID tskid, TEXPTN rasptn);

Parameters:
 ID tskid R4 Task ID

 TEXPTN rasptn R5 Task exception factor of task exception

processing to be requested

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (rasptn = 0)

 E_ID [p] Out of ID range (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object status is invalid (Task indicated by tskid is in the

DORMANT state or task exception processing routine is not

defined)

Function:

Requests task exception processing by the task exception factor specified by rasptn, for the task
specified by tskid. That is, the pended exception factor for the task is ORed with the value
indicated by the parameter rasptn.

By specifying tskid = TSK_SELF(0), the current task can be specified.

When the conditions for starting task exception processing routine are satisfied, the task
exception processing routine is initiated.

The service calls can also be called from the CPU exception handler.

Section3 Service Calls

Rev.6.00 114
REJ10B0060-0600

3.6.3 Disable Task Exception Processing (dis_tex)

C-Language API:
 ER ercd = dis_tex(void);

Parameters:
 None

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:

 E_OBJ [k] Object status is invalid (Task exception processing

routine is not defined on the current task)

 E_CTX [k] Context error (Called from disabled system state)

Function:

The current task is transferred to the task exception processing disabled state.

Section3 Service Calls

Rev.6.00 115
REJ10B0060-0600

3.6.4 Enable Task Exception Processing (ena_tex)

C-Language API:
 ER ercd = ena_tex(void);

Parameters:
 None

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:

 E_OBJ [k] Object status is invalid (Task exception processing

routine is not defined on the current task)

 E_CTX [k] Context error (Called from disabled system state)

Function:

The current task is transferred to the task exception enabled state.

When conditions for starting the task exception processing routine are satisfied through this
service call, the task exception processing routine is initiated.

Section3 Service Calls

Rev.6.00 116
REJ10B0060-0600

3.6.5 Refer To Task Exception Processing Disabled State (sns_tex)

C-Language API:
 BOOL state= sns_tex(void);

Parameters:
 None

Return Parameters:
 BOOL state R0 Task exception processing disabled state

Error Codes:
 None

Function:

When a task in the RUNNING state is in the task exception processing disabled state, TRUE is
returned; when in the task exception processing enabled state, FALSE is returned. A task in the
RUNNING state is the current task when called from the task context, and when called from a
non-task context is the task which had been run immediately prior to the transition to the non-
task context. When a task is called from a non-task context, and no task is in the RUNNING
state, TRUE is returned.

Tasks for which no task exception processing routines are defined are held in the task exception
processing disabled state, so that when no task exception processing routine has been defined for
a task in the RUNNING state, this service call returns TRUE.

This service call can also be called in the CPU-locked state and from the CPU exception
handler.

Section3 Service Calls

Rev.6.00 117
REJ10B0060-0600

3.6.6 Refer to Task Exception Processing State (ref_tex, iref_tex)

C-Language API:
 ER ercd = ref_tex(ID tskid, T_RTEX *pk_rtex);

 ER ercd = iref_tex(ID tskid, T_RTEX *pk_rtex);

Parameters:
 ID tskid R4 Task ID

 T_RTEX *pk_rtex R5 Pointer to the packet where the task exception

processing state is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RTEX *pk_rtex R5 Pointer to the packet where the task exception

processing state is stored

Packet Structure:
 typedef struct t_rtex{

 STAT texstat; 0 4 Task exception processing state

 TEXPTN pndptn; +4 4 Pended exception factor

 }T_RTEX;

Error Codes:
 E_PAR [p] Parameter error (pk_rtex is other than a multiple of four)

 E_ID [p] Out of ID range (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task indicated by tskid does not exist)

 E_OBJ [k] Object status is invalid (Task indicated by tskid is in the

DORMANT state or task exception processing routine is not defined)

Function:

The state relating to task exception processing for the task specified by tskid is referenced, and
the result is returned to the area indicated by pk_rtex.

One of the following values is returned for texstat, according to whether the target task is in a
task exception enabled state or a task exception processing disabled state.

Table 3.21 Task Exception Processing State (texstat)

texstat Code Description

TTEX_ENA H'00000000 Task exception processing enabled state

TTEX_DIS H'00000001 Task exception processing disabled state

The pended exception factor for the target task is returned as pndptn. If there are no unprocessed
exception processing requests, 0 is returned as pndptn.

By specifying tskid = TSK_SELF (0), the current task can be specified.

Section3 Service Calls

Rev.6.00 118
REJ10B0060-0600

3.7 Synchronization and Communication (Semaphore)
Semaphore Service Calls: Semaphores are controlled by the service calls listed in table 3.22.

Table 3.22 Service Calls for Event Flag Control

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_sem [s] T/E/D/U

icre_sem

Creates semaphore

 N/E/D/U

acre_sem T/E/D/U

iacre_sem

Creates semaphore and assigns semaphore ID automatically

N/E/D/U

del_sem Deletes semaphore T/E/D/U

sig_sem [S] T/E/D/U

isig_sem [S]

Returns semaphore resource

N/E/D/U

wai_sem [S] Waits on semaphore resource T/E/U

pol_sem [S] T/E/D/U

ipol_sem

Polls and waits on semaphore resource

N/E/D/U

twai_sem [S] Waits on semaphore resource with timeout function T/E/U

ref_sem T/E/D/U

iref_sem

Refers to semaphore state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Semaphore Specifications: The semaphore specifications are listed in table 3.23.

Table 3.23 Semaphore Specifications

Item Description

Semaphore ID 1 to CFG_MAXSEMID (1023 max.)

Maximum semaphore count 65535

Attribute supported TA_TFIFO: Task wait queue is managed on a FIFO basis

TA_TPRI: Task wait queue is managed on priority

Section3 Service Calls

Rev.6.00 119
REJ10B0060-0600

3.7.1 Create Semaphore

(cre_sem, icre_sem,)

(acre_sem, iacre_sem: Assign Semaphore ID Automatically)

C-Language API:
 ER ercd = cre_sem(ID semid, T_CSEM *pk_csem);

 ER ercd = icre_sem(ID semid, T_CSEM *pk_csem);

 ER_ID semid = acre_sem(T_CSEM *pk_csem);

 ER_ID semid = iacre_sem(T_CSEM *pk_csem);

Parameters:
 <cre_sem, icre_sem>

 ID semid R4 Semaphore ID

 T_CSEM *pk_csem R5 Pointer to the packet where semaphore

creation information is stored

 <acre_sem, iacre_sem>

 T_CSEM *pk_csem R4 Pointer to the packet where semaphore

creation information is stored

Return Parameters:
 <cre_sem, icre_sem>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_sem, iacre_sem>

 ER_ID semid R0 ID of created semaphore (a positive

value) or error code

Packet Structure
 typedef struct t_csem{

 ATR sematr; +0 4 Semaphore attribute

 UINT isemcnt +4 4 Initial value of semaphore resource count

 UINT maxsem; +8 4 Maximum number of semaphore resources

 }T_CSEM;

Error Codes:
 E_RSATR [p] Invalid attribute (sematr is invalid)

 E_PAR [p] Parameter error (pk_csem is other than a multiple of four,

maxsem = 0, maxsem > H'ffff, or isemcnt > maxsem)

 E_ID [p] Invalid ID number (semid ≤ 0 or semid > CFG_MAXSEMID)
 E_OBJ [k] Object status is invalid

(Semaphore indicated by semid already exists)

 E_NOID [k] No ID available

Section3 Service Calls

Rev.6.00 120
REJ10B0060-0600

Function:

Service calls cre_sem and icre_sem create a semaphore with an ID indicated by semid using the
contents specified by the parameter pk_csem.

The service calls acre_sem and iacre_sem search for an unused semaphore ID, create a
semaphore that has this ID with the contents specified by the parameter pk_csem, and return the
ID as a return parameter. The range for searching for an unused semaphore ID is 1 to
CFG_MAXSEMID.

The parameter sematr is specified in the following format. See table 3.24 for details.

sematr: = (TA_TFIFO || TA_TPRI)

Table 3.24 Event Attributes (sematr)

sematr Code Description

TA_TFIFO H'00000000 Task wait queue is managed on a FIFO basis

TA_TPRI H'00000001 Task wait queue is managed on priority

The parameter isemcnt specifies the initial value of the semaphore to be created. It can range
from 0 to maxsem.

The parameter maxsem specifies the maximum number of resources of the semaphore to be
created. It can range from 1 to 65535.

A semaphore can also be created statically by the configurator.

Section3 Service Calls

Rev.6.00 121
REJ10B0060-0600

3.7.2 Delete Semaphore (del_sem)

C-Language API:
 ER ercd = del_sem(ID semid);

Parameters:
 ID semid R4 Semaphore ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (semid ≤ 0 or semid > CFG_MAXSEMID)

 E_NOEXS [k] Undefined (Semaphore indicated by semid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

The service call del_sem deletes the semaphore indicated by the parameter semid.

No error will occur even if there is a task waiting to acquire a resource with the semaphore
indicated by semid. However, in that case, the task in the WAITING state will be released and
error code E_DLT will be returned.

Section3 Service Calls

Rev.6.00 122
REJ10B0060-0600

3.7.3 Returns Semaphore Resource (sig_sem, isig_sem)

C-Language API:
 ER ercd = sig_sem(ID semid);

 ER ercd = isig_sem(ID semid);

Parameters:
 ID semid R4 Semaphore ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (semid ≤ 0 or semid > CFG_MAXSEMID)

 E_NOEXS [k] Undefined (Semaphore indicated by semid does not exist)

 E_QOVR [k] Queuing overflow (semcnt > maxsem*)

Note: maxsem: Maximum number of semaphore resources specified at semaphore creation

Function:

Each service call returns one resource to the semaphore indicated by semid. If there is a task
waiting for the semaphore indicated by semid, the task at the head of the wait queue is released
from the WAITING state, and the resource is assigned to the task. If there are no tasks in the
wait queue, the semaphore count is incremented by one.

The maximum semaphore count is maxsem, which is specified at semaphore creation.

Section3 Service Calls

Rev.6.00 123
REJ10B0060-0600

3.7.4 Wait on Semaphore (wai_sem, pol_sem, ipol_sem, twai_sem)

C-Language API:
 ER ercd = wai_sem(ID semid);

 ER ercd = pol_sem(ID semid);

 ER ercd = ipol_sem(ID semid);

 ER ercd = twai_sem(ID semid, TMO tmout);

Parameters:
 ID semid R4 Semaphore ID

 <twai_sem>

 TMO tmout R5 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ –2)

 E_ID [p] Invalid ID number (semid ≤ 0 or semid > CFG_MAXSEMID)

 E_NOEXS [k] Undefined (Semaphore indicated by semid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted (Target semaphore indicated by semid

has been deleted while waiting)

 E_RLWAI [k] WAITING state is forcibly cancelled

(rel_wai service call was called in the WAITING state)

 E_TMOUT [k] Polling failed or timeout

Function:

Each service call acquires one resource from the semaphore specified by semid.

Each service call decrements the number of resources of the target semaphore by one if the
number of resources of the target semaphore is equal to or greater than 1, and the task calling the
service call continues execution. If no resources exist, the task calling the service call wai_sem
or twai_sem shifts to the WAITING state, and with service call pol_sem or ipol_sem, error code
E_TMOUT is immediately returned. The wait queue is managed according to the attribute
specified at creation.

The parameter tmout specified by service call twai_sem specifies the timeout period. If a
positive value is specified for the parameter tmout, error code E_TMOUT is returned when the
tmout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for the service call pol_sem will be
performed.

If tmout = TMO_FEVR (–1) is specified, the timeout monitoring is not performed. In this case,
the same operation as for the service call wai_sem will be performed.

Section3 Service Calls

Rev.6.00 124
REJ10B0060-0600

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 125
REJ10B0060-0600

3.7.5 Refer to Semaphore State (ref_sem, iref_sem)

C-Language API:
 ER ercd = ref_sem(ID semid, T_RSEM *pk_rsem);

 ER ercd = iref_sem(ID semid, T_RSEM *pk_rsem);

Parameters:
 ID semid R4 Semaphore ID

 T_RSEM *pk_rsem R5 Pointer to the area where the semaphore state is

to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RSEM *pk_rsem R5 Pointer to the area where the semaphore state is

stored

Packet Structure:
 typedef struct t_rsem{

 ID wtskid; +0 2 Wait task ID

 UINT semcnt; +4 4 Current semaphore count value

 }T_RSEM;

Error Codes:
 E_PAR [p] Parameter error (pk_rsem is other than a multiple of four)

 E_ID [p] Invalid ID number (semid ≤ 0 or semid > CFG_MAXSEMID)

 E_NOEXS [k] Undefined (Semaphore indicated by semid does not exist)

Function:

Each service call refers to the state of the semaphore indicated by the parameter semid. Each
service call returns the task ID at the head of the semaphore wait queue (wtskid) and the current
semaphore count (semcnt), to the area specified by the parameter pk_rsem. If there is no task
waiting for a semaphore, TSK_NONE (0) is returned as a wait task ID.

Section3 Service Calls

Rev.6.00 126
REJ10B0060-0600

3.8 Synchronization and Communication (Event Flag)
Event Flag Service Calls: Event flags are controlled by the service calls listed in table 3.25.

Table 3.25 Service Calls for Event Flag Control

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_flg [s] T/E/D/U

icre_flg

Creates event flag

 N/E/D/U

acre_flg T/E/D/U

iacre_flg

Creates event flag and assigns event flag ID automatically

N/E/D/U

del_flg Deletes event flag T/E/D/U

set_flg [S] T/E/D/U

iset_flg [S]

Sets event flag

N/E/D/U

clr_flg [S] T/E/D/U

iclr_flg

Clears event flag

N/E/D/U

wai_flg [S] Waits for event flag T/E/U

pol_flg [S] T/E/D/U

ipol_flg [S]

Polls and waits for event flag

N/E/D/U

twai_flg [S] Waits for event flag with timeout function T/E/U

ref_flg T/E/D/U

iref_flg

Refers to event flag state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 127
REJ10B0060-0600

Event Flag Specifications: The event flag specifications are listed in table 3.26.

Table 3.26 Event Flag Specifications

Item Description

Event flag ID 1 to CFG_MAXFLGID (1023 max.)

Maximum flag pattern size 32 bits

Attribute supported TA_TFIFO: Task wait queue is managed on a FIFO basis
TA_TPRI: Task wait queue is managed on priority
TA_WSGL: Does not permit multiple tasks to wait for the event flag
TA_WMUL: Permits multiple tasks to wait for the event flag
TA_CLR: An event flag is cleared at the time of waiting release

Section3 Service Calls

Rev.6.00 128
REJ10B0060-0600

3.8.1 Create Event Flag

(cre_flg, icre_flg)

(acre_flg, iacre_flg: Assign Event Flag ID Automatically)

C-Language API:
 ER ercd = cre_flg(ID flgid, T_CFLG *pk_cflg);

 ER ercd = icre_flg(ID flgid, T_CFLG *pk_cflg);

 ER_ID flgid = acre_flg(T_CFLG *pk_cflg);

 ER_ID flgid = iacre_flg(T_CFLG *pk_cflg);

Parameters:
 <cre_flg, icre_flg>

 ID flgid R4 Event flag ID

 T_CFLG *pk_cflg R5 Pointer to the packet where the event flag

creation information is stored

 <acre_flg, iacre_flg>

 T_CFLG *pk_cflg R4 Pointer to the packet where the event flag

creation information is stored

Return Parameters:
 <cre_flg, icre_flg>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_flg, iacre_flg>

 ER_ID flgid R0 Created event flag ID (a positive value) or

error code

Packet Structure:
 typedef struct t_cflg{

 ATR flgatr; +0 4 Event flag attribute

 FLGPTN iflgptn; +4 4 Initial value of event flag

 }T_CFLG;

Error Codes:
 E_RSATR [p] Invalid attribute (flgatr is invalid)

 E_PAR [p] Parameter error (pk_cflg is other than a multiple of four)

 E_ID [p] Invalid ID number (flgid ≤ 0 or flgid > CFG_MAXFLGID)

 E_OBJ [k] Object status is invalid

(Event flag indicated by flgid already exists)

 E_NOID [k] No ID available

Section3 Service Calls

Rev.6.00 129
REJ10B0060-0600

Function:

The service calls cre_flg and icre_flg create an event flag with an ID indicated by flgid with the
contents indicated by pk_cflg.

The service calls acre_flg and iacre_flg search for an unused event flag ID and create an event
flag that has this ID, with the contents specified by the parameter pk_cflg. The created event flag
ID is returned as a return parameter. The range for searching for an unused event flag ID is 1 to
CFG_MAXFLGID.

The parameter flgatr is specified in the following format. See table 3.27 for details.

flgatr:= ((TA_TFIFO || TA_TPRI) | (TA_WSGL || TA_WMUL) | [TA_CLR])

Table 3.27 Event Flag Attribute (flgatr)

flgatr Code Description

TA_TFIFO H'00000000 Task wait queue is managed on a FIFO basis

TA_TPRI H'00000001 Task wait queue is managed on priority

TA_WSGL H'00000000 Does not permit multiple tasks to wait for the event flag

TA_WMUL H'00000002 Permits multiple tasks to wait for the event flag

TA_CLR H'00000004 Clears event flag at the time of waiting release

If TA_WSGL attribute is specified for flgatr, only one task can wait for the created event flag. In
this case, the event flag performs the same operation when either attribute TA_TFIFO or
TA_TPRI is specified. On the other hand, multiple tasks can enter the WAITING state when the
TA_WMUL attribute is specified. If TA_CLR attribute is specified for flgatr, all bits of the
event flag bit pattern are cleared when the wait release condition is satisfied.

The parameter iflgptn specifies the initial value of the event flag.

An event flag can also be created statically by the configurator.

Section3 Service Calls

Rev.6.00 130
REJ10B0060-0600

3.8.2 Delete Event Flag (del_flg)

C-Language API:
 ER ercd = del_flg(ID flgid);

Parameters:
 ID flgid R4 Event flag ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (flgid ≤ 0 or flgid > CFG_MAXFLGID)

 E_NOEXS [k] Undefined (Event flag indicated by flgid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

The service call del_flg deletes the event flag indicated by the parameter flgid.

No error will occur even if there is a task waiting for the conditions to be met in the event flag
indicated by flgid. However, in that case, the task in the WAITING state will be released and
error code E_DLT will be returned.

Section3 Service Calls

Rev.6.00 131
REJ10B0060-0600

3.8.3 Set Event Flag (set_flg, iset_flg)

C-Language API:
 ER ercd = set_flg(ID flgid, FLGPTN setptn);

 ER ercd = iset_flg(ID flgid, FLGPTN setptn);

Parameters:
 ID flgid R4 Event flag ID

 FLGPTN setptn R5 Bit pattern to set

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (flgid ≤ 0 or flgid > CFG_MAXFLGID)

 E_NOEXS [k] Undefined (Event flag indicated by flgid does not exist)

Function:

The event flag specified by flgid is ORed with the value indicated by the parameter setptn.

Each service call shifts a task to the READY state after the event flag value has been changed
and when the wait release conditions of a task waiting for an event flag have been satisfied. Wait
release conditions are checked in the queue order. All bits of the event flag bit pattern and
service call are cleared when the TA_CLR attribute is set to the target event flag attribute.

When the TA_WMUL attribute is set to the event flag and the TA_CLR attribute is not
specified, multiple wait tasks may be released when the service call set_flg is called only once.
When multiple wait tasks are released, the tasks are released in the queue order of the event flag.

Section3 Service Calls

Rev.6.00 132
REJ10B0060-0600

3.8.4 Clear Event Flag (clr_flg, iclr_flg)

C-Language API:
 ER ercd = clr_flg(ID flgid, FLGPTN clrptn);

 ER ercd = iclr_flg(ID flgid, FLGPTN clrptn);

Parameters:
 ID flgid R4 Event flag ID

 FLGPTN clrptn R5 Bit pattern to clear

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (flgid ≤ 0 or flgid > CFG_MAXFLGID)

 E_NOEXS [k] Undefined (Event flag indicated by flgid does not exist)

Function:

The event-flag bits specified by flgid is ANDed with the value indicated by the parameter clrptn.

Section3 Service Calls

Rev.6.00 133
REJ10B0060-0600

3.8.5 Wait for Event Flag Setting (wai_flg, pol_flg, ipol_flg, twai_flg)

C-Language API:
 ER ercd = wai_flg(ID flgid , FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 ER ercd = pol_flg(ID flgid , FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 ER ercd = ipol_flg(ID flgid , FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

 ER ercd = twai_flg (ID flgid , FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn,

TMO tmout);

Parameters:
 ID flgid R4 Event flag ID

 FLGPTN waiptn R5 Wait bit pattern

 MODE wfmode R6 Wait mode

 FLGPTN *p_flgptn R7 Pointer to the area where the bit pattern at

waiting release is to be returned

 <twai_flg>

 TMO tmout @R15 Timeout value

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 FLGPTN *p_flgptn R7 Pointer to the area where the bit pattern at

waiting release is stored

Error Codes:
 E_PAR [p] Parameter error (p_flgptn is other than a multiple of four,

waiptn = 0, wfmode is invalid, or tmout ≤ –2)

 E_ID [p] Invalid ID (flgid ≤ 0, flgid > CFG_MAXFLGID)

 E_NOEXS [k] Undefined (Event flag indicated by flgid does not exist)

 E_ILUSE [k] Illegal use of service call (A task is already waiting for the

event flag with TA_WSGL attribute)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted (Event flag indicated by flgid has been

deleted in the WAITING state)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state was forcibly cancelled

(rel_wai service call was called in the WAITING state)

Section3 Service Calls

Rev.6.00 134
REJ10B0060-0600

Function:

A task that has called one of these service calls waits until the event flag specified by the
parameter flgid is set according to the waiting conditions indicated by the parameters waiptn and
wfmode. Each service call returns the bit pattern of the event flag to the area indicated by
p_flgptn when the wait release condition is satisfied.

If the attribute of the target event flag is TA_WSGL and another task is waiting for the event
flag, error code E_ILUSE is returned.

If the wait release conditions are met before a task calls service call wai_flg, pol_flg, ipol_flg, or
twai_flg, the service call will be completed immediately. If they are not met, the task will be sent
to the wait queue when the service call wai_flg or twai_flg is called. With service call pol_flg or
ipol_flg, error code E_TMOUT is immediately returned, then the task terminates.

The parameter wfmode is specified in the following format. See table 3.28 for details.

wfmode:= ((TWF_ANDW || TWF_ORW))

Table 3.28 Wait Modes (wfmode)

wfmode Code Description

TWF_ANDW H'00000000 AND wait

TWF_ORW H'00000001 OR wait

If TWF_ANDW is specified as wfmode, the task waits until all the bits specified by waiptn have
been set. If TWF_ORW is specified as wfmode, the task waits until any one of the bits specified
by waiptn has been set in the specified event flag.

The parameter tmout specified by service call twai_flg specifies the timeout period. If a positive
value is specified for the parameter tmout, error code E_TMOUT is returned when the timeout
period has passed without the waiting release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for the service call pol_flg will be
performed.

If tmout = TMO_FEVR (–1) is specified, the timeout monitoring is not performed. In this case,
the same operation as for service call wai_flg will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 135
REJ10B0060-0600

3.8.6 Refer to Event Flag State (ref_flg, iref_flg)

C-Language API

 ER ercd = ref_flg(ID flgid , T_RFLG *pk_rflg);

 ER ercd = iref_flg(ID flgid , T_RFLG *pk_rflg);

Parameters:
 ID flgid R4 Event flag ID

 T_RFLG *pk_rflg R5 Pointer to the area where the event flag state

is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RFLG *pk_rflg R5 Pointer to the packet where event flag state is

stored

Packet Structure:
 typedef struct t_rflg{

 ID wtskid; +0 2 Wait task ID

 FLGPTN flgptn; +4 4 Event flag bit pattern

 }T_RFLG;

Error Codes:
 E_PAR [p] Parameter error (pk_rflg is other than a multiple of four)

 E_ID [p] Invalid ID number (flgid ≤ 0 or flgid > CFG_MAXFLGID)

 E_NOEXS [k] Undefined (Event flag indicated by flgid does not exist)

Function:

Each service call refers to the state of the event flag indicated by the parameter flgid.

Each service call returns the task ID at the head of the event flag wait queue (wtskid) and the
current event flag bit pattern (flgptn), to the area specified by the parameter pk_rflg.

If there is no task waiting for the specified event flag, TSK_NONE (0) is returned as a wait task
ID.

Section3 Service Calls

Rev.6.00 136
REJ10B0060-0600

3.9 Synchronization and Communication (Data Queue)
Data Queue Service Calls: Data queues are controlled by the service calls listed in table 3.29.

Table 3.29 Service Calls for Data Queue Control

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_dtq [s] T/E/D/U

icre_dtq

Creates data queue

 N/E/D/U

acre_dtq T/E/D/U

iacre_dtq

Creates data queue and assigns data queue ID automatically

N/E/D/U

del_dtq Deletes data queue T/E/D/U

snd_dtq [S] Sends data to data queue T/E/U

psnd_dtq [S] T/E/D/U

ipsnd_dtq [S]

Polls and sends data to data queue

N/E/D/U

tsnd_dtq [S] Sends data to data queue with timeout function T/E/U

fsnd_dtq [S] T/E/D/U

ifsnd_dtq [S]

Forcibly sends data to data queue

N/E/D/U

rcv_dtq [S] Receives data from data queue T/E/U

prcv_dtq [S] Polls and receives data from data queue T/E/D/U

trcv_dtq [S] Receives data from data queue with timeout function T/E/U

ref_dtq T/E/D/U

iref_dtq

Refers to data queue state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 137
REJ10B0060-0600

Data Queue Specifications: The data queue specifications are listed in table 3.30.

Table 3.30 Data Queue Specifications

Item Description

Data queue ID 1 to CFG_MAXDTQID (1023 max.)

One word 32 bits

Attribute supported TA_TFIFO: Task queue waiting for sending a message is managed on a
FIFO basis

TA_TPRI: Task queue waiting for sending a message is managed on
priority

Section3 Service Calls

Rev.6.00 138
REJ10B0060-0600

3.9.1 Create Data Queue

(cre_dtq, icre_dtq,)

(acre_dtq, iacre_dtq: Assign Data Queue ID Automatically)

C-Language API:
 ER ercd = cre_dtq(ID dtqid, T_CDTQ *pk_cdtq);

 ER ercd = icre_dtq (ID dtqid, T_CDTQ *pk_cdtq);

 ER_ID dtqid = acre_dtq (T_CDTQ *pk_cdtq);

 ER_ID dtqid = iacre_dtq (T_CDTQ *pk_cdtq);

Parameters:
 <cre_dtq, icre_dtq>

 ID dtqid R4 Data queue ID

 T_CDTQ *pk_cdtq R5 Pointer to the packet where the data queue

creation information is stored

 <acre_dtq, iacre_dtq>

 T_CDTQ *pk_cdtq R4 Pointer to the packet where the data queue

creation information is stored

Return Parameters:
 <cre_dtq, icre_dtq>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_dtq, iacre_dtq>

 ER_ID dtqid R0 Created data queue ID (a positive value) or

error code

Packet Structure:
 typedef struct t_cdtq{

 ATR dtqatr; +0 4 Data queue attribute

 UINT dtqcnt; +4 4 Size of data queue area (the number of

data)

 VP dtq; +8 4 Start address of data queue area

 }T_CDTQ;

Error Codes:
 E_NOMEM [k] Insufficient memory (Data queue area cannot be allocated in

the memory)

 E_RSATR [p] Invalid attribute (dtqatr is invalid)

 E_PAR [p] Parameter error (pk_cdtq is other than a multiple of four)

 [k] (dtqcnt × data queue size (4 bytes) exceeds 32-bit area)

 E_ID [p] Invalid ID number (dtqid ≤ 0 or dtqid > CFG_MAXDTQID)

 E_OBJ [k] Object status is invalid

(Data queue indicated by dtqid already exists)

 E_NOID [k] No ID available

Section3 Service Calls

Rev.6.00 139
REJ10B0060-0600

Function:

The service calls cre_dtq and icre_dtq create a data queue with the ID specified by dtqid and
with the contents specified by pk_cdtq.

The service calls acre_dtq and iacre_dtq search for an unused data queue ID and create a data
queue with that ID and with the contents specified by pk_cdtq, and return the ID as a return
parameter. The range for searches for unused data queue IDs is from 1 to CFG_MAXDTQID.

The attribute dtqatr is specified in the following format. See table 3.31 for details.

dtqatr:= (TA_TFIFO || TA_TPRI)

Table 3.31 Data Queue Attributes (dtqatr)

dtqatr Code Description

TA_TFIFO H'00000000 Task queue waiting for sending a message is managed on a FIFO
basis

TA_TPRI H'00000001 Task queue waiting for sending a message is managed on priority

Data queue receive-waiting queues are managed in FIFO order. Further, data sent to a data
queue is also managed in FIFO order in the data queue, without priority.

dtqcnt specifies the number of data items stored in the data queue area. It is also possible to
specify a value of 0 for dtqcnt; in this case, data send tasks and data receive tasks are completely
synchronized.

Data queues are allocated from the data queue area (CFG_DTQSZ) specified by the
configurator. On successful creation of a data queue, the free data queue area size will decrease
by an amount given by the following expression:

Decrease in size = dtqcnt x 4 + 16 bytes

dtq is for future expansion; in this kernel, NULL must be specified. If a value other than NULL
is used, normal system operation cannot be guaranteed.

Data queues can also be created statically by the configurator.

Section3 Service Calls

Rev.6.00 140
REJ10B0060-0600

3.9.2 Delete Data Queue (del_dtq)

C-Language API:
 ER ercd = del_dtq(ID dtqid);

Parameters:
 ID dtqid R4 Data queue ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (dtqid ≤ 0 or dtqid > CFG_MAXDTQID)

 E_NOEXS [k] Undefined (Data queue indicated by dtqid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

The data queue specified by dtqid is deleted.

No error occurs even if there is a send-waiting task or receive-waiting task in the data queue
specified by dtqid. However, the WAITING state of the task is cancelled, and an error code
E_DLT is returned.

On deletion, the free data queue area size increases by an amount given by the following
expression:

Increase in size = dtqcnt specified at creation x 4 + 16 bytes

Section3 Service Calls

Rev.6.00 141
REJ10B0060-0600

3.9.3 Send Data to Data Queue (snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq,
ifsnd_dtq)

C-Language API:
 ER ercd = snd_dtq(ID dtqid, VP_INT data);

 ER ercd = psnd_dtq(ID dtqid, VP_INT data);

 ER ercd = ipsnd_dtq(ID dtqid, VP_INT data);

 ER ercd = tsnd_dtq(ID dtqid, VP_INT data, TMO tmout);

 ER ercd = fsnd_dtq(ID dtqid, VP_INT data);

 ER ercd = ifsnd_dtq(ID dtqid, VP_INT data);

Parameters:
 ID dtqid R4 Data Queue ID

 VP_INT data R5 Data sent to data queue

 <tsnd_dtq>

 TMO tmout R6 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ -2)

 E_ID [p] Invalid ID number (dtqid ≤ 0 or dtqid > CFG_MAXDTQID)

 E_ILUSE [k] Illegal use of service call (fsnd_dtq, ifsnd_dtq is issued

for the data queue which dtqcnt is 0)

 E_NOEXS [k] Undefined (Data queue indicated by dtqid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted (Target data queue indicated by dtqid

has been deleted while waiting)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly cancelled

(rel_wai service call was called in the WAITING state)

Section3 Service Calls

Rev.6.00 142
REJ10B0060-0600

Function:

The data specified by the parameter data (4 bytes) is sent to the data queue specified by dtqid.

In addition, when the data queue generated by dtqcnt = 0 is specified, fsnd_dtq and ifsnd_dtq
service call generates E_ILUSE error.

1. When the waiting task for reception exists in the target data queue

The data is passed to the head task of receiving queuing and the waiting state of the task is
canceled.

2. When the waiting task for reception does not exist in the target data queue

a) When the data queue is not full

The data specified is stored to the end of the data queue. The counts of the data queue is
incremented.

b) When the data queue is full

i) snd_dtq, tsnd_dtq

The calling task is connected with queuing for waiting for the empty domain of data
queue.

In the case of a service call tsnd_dtq, the wait time is specified to tmout.

If a positive value is specified for the parameter tmout, error code E_TMOUT is
returned when the timeout period has passed without the wait release conditions being
satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for the service call
psnd_dtq will be performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In
other words, the same operation as for service call snd_dtq will be performed.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for
time tick cycles), the maximum value that can be specified for tmout is
H'7fffffff/CFG_TICDENO. If a value larger than this is specified, operation is not
guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

ii) psnd_dtq, ipsnd_dtq

This call returns immediately with E_TMOUT error.

iii) fsnd_dtq, ifsnd_dtq

The data is stored in the end of data queue after the data of the head of data queue is
deleted.

Section3 Service Calls

Rev.6.00 143
REJ10B0060-0600

3.9.4 Receive Data from Data Queue (rcv_dtq, prcv_dtq, trcv_dtq)

C-Language API:
 ER ercd = rcv_dtq(ID dtqid, VP_INT *p_data);

 ER ercd = prcv_dtq(ID dtqid, VP_INT *p_data);

 ER ercd = trcv_dtq(ID dtqid, VP_INT data, TMO tmout);

Parameters:
 ID dtqid R4 Data queue ID

 VP_INT *p_data R5 Start address of the area where received

data is to be returned

 <trcv_dtq>

 TMO tmout R6 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 VP_INT *p_data R5 Pointer to the area where received data is

stored

Error Codes:
 E_PAR [p] Parameter error (p_data is other than a multiple of four

or tmout ≤ -2)

 E_ID [p] Invalid ID number (dtqid ≤ 0 or dtqid > CFG_MAXDTQID)

 E_NOEXS [k] Undefined (Data queue indicated by dtqid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted (Target data queue indicated by

dtqid has been deleted while waiting)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly cancelled

(rel_wai service call was called in the WAITING state)

Function:

Data is received from the data queue specified by dtqid, and stored it to the area indicated by
parameter p_data.

If there is data in the data queue, the leading data (the oldest message) is received. On receiving
data from the data queue, the data queue count is decremented by 1. As a result, if data can be
stored for a task in the send-waiting queue, data is sent and processed in the order of the wait
queue.

Section3 Service Calls

Rev.6.00 144
REJ10B0060-0600

If there is no data in the data queue, and there exists a data send-waiting task (such a
circumstance can occur only when the data queue area capacity is 0), the data of the task at the
head of data send-waiting queue is received. As a result, the WAITING state of the data send-
waiting task is cancelled.

If there is no data in the data queue, and there are also no data send-waiting tasks, a service call
rcv_dtq or trcv_dtq causes the calling task to be linked to a wait queue to wait for message
arrival (receive-waiting queue). In the case of a service call prcv_dtq, the call returns
immediately with an E_TMOUT error. The receive-waiting queue is managed in FIFO order.

In the case of the service call trcv_dtq, tmout specifies the wait time.

If a positive value is specified for the parameter tmout, error code E_TMOUT is returned when
the timeout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for the service call prcv_dtq will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words,
the same operation as for service call rcv_dtq will be performed.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick
cycles), the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 145
REJ10B0060-0600

3.9.5 Refer to Data Queue State (ref_dtq, iref_dtq)

C-Language API:
 ER ercd = ref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

 ER ercd = ref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

Parameters:
 ID dtqid R4 Data queue ID

 T_RDTQ *pk_rdtq R5 Pointer to the packet where data queue

state is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RDTQ *pk_rdtq R5 Pointer to the packet where data queue

state is stored

Packet Structure:
 typedef struct t_rdtq{

 ID stskid; 0 2 Task ID waiting for sending

 ID rtskid; +2 2 Task ID waiting for receiving

 UINT sdtqcnt; +4 4 The number of data in the data queue

 }T_RDTQ;

Error Codes:
 E_PAR [p] Parameter error (pk_rdtq is other than a multiple of four)

 E_ID [p] Invalid ID number (dtqid ≤ 0 or dtqid > CFG_MAXDTQID)

 E_NOEXS [k] Undefined (Data queue indicated by dtqid does not exist)

Function:

The state of the data queue specified by dtqid is referenced, and the send-waiting task IDs
(stskid), the receive-waiting task IDs (rtskid), and the number of data items in the data queue
(sdtqcnt) are returned to the area specified by pk_rdtq.

If there are no send-waiting tasks or receive-waiting tasks, TSK_NONE(0) is returned as the
wait task ID.

Section3 Service Calls

Rev.6.00 146
REJ10B0060-0600

3.10 Synchronization and Communication (Mailbox)
Mailbox Service Calls: Mailboxes are controlled by the service calls listed in table 3.32.

Table 3.32 Service Calls for Mailbox Control

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mbx [s] T/E/D/U

icre_mbx

Creates mailbox

 N/E/D/U

acre_mbx T/E/D/U

iacre_mbx

Creates mailbox and assigns mailbox ID automatically

N/E/D/U

del_mbx Deletes mailbox T/E/D/U

snd_mbx [S] T/E/D/U

isnd_mbx

Sends data to mailbox

N/E/D/U

rcv_mbx [S] Receives data from mailbox T/E/U

prcv_mbx [S] T/E/D/U

iprcv_mbx

Polls and receives data from mailbox

NE/D/U

trcv_mbx [S] Receives data from mailbox with timeout function T/E/U

ref_mbx T/E/D/U

iref_mbx

Refers to mailbox state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Mailbox Specifications: The mailbox specifications are listed in table 3.33.

Table 3.33 Mailbox Specifications

Item Description

Mailbox ID 1 to CFG_MAXMBXID (1023 max.)

Message priority 1 to CFG_MAXMSGPRI* (255 max.)

Attribute supported TA_TFIFO: Task wait queue is managed on a FIFO basis
TA_TPRI: Task wait queue is managed on priority
TA_MFIFO: Message queue is managed on a FIFO basis
TA_MPRI: Message queue is managed on priority

Note: This value is the same as TMAX_MPRI defined in kernel_macro.h.

Section3 Service Calls

Rev.6.00 147
REJ10B0060-0600

3.10.1 Create Mailbox

(cre_mbx, icre_mbx)

(acre_mbx, iacre_mbx: Assign Mailbox ID Automatically)

C-Language API:
 ER ercd = cre_mbx(ID mbxid, T_CMBX *pk_cmbx);

 ER ercd = icre_mbx(ID mbxid, T_CMBX *pk_cmbx);

 ER_ID mbxid = acre_mbx(T_CMBX *pk_cmbx);

 ER_ID mbxid = iacre_mbx(T_CMBX *pk_cmbx);

Parameters:
 <cre_mbx, icre_mbx>

 ID mbxid R4 Mailbox ID

 T_CMBX *pk_cmbx R5 Pointer to the packet where the mailbox

creation information is stored

 <acre_mbx, iacre_mbx>

 T_CMBX *pk_cmbx R4 Pointer to the packet where the mailbox

creation information is stored

Return Parameters:
 <cre_mbx, icre_mbx>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_mbx, iacre_mbx>

 ER_ID mbxid R0 Created mailbox ID (a positive value) or

error code

Packet Structure:
 typedef struct t_cmbx{

 ATR mbxatr; +0 4 Mailbox attribute

 PRI maxmpri; +4 2 Maximum value of message priority

 VP mprihd; +8 4 Start address of message queue header

with priority

 }T_CMBX;

Error Codes:
 E_RSATR [p] Invalid attribute (mbxatr is invalid)

 E_PAR [p] Parameter error (pk_cmbx is other than a multiple of four,

maxmpri ≤ 0, or maxmpri > CFG_MAXMSGPRI)

 E_ID [p] Invalid ID number (mbxid ≤ 0 or mbxid > CFG_MAXMBXID)

 E_OBJ [k] Object status is invalid

(Mailbox indicated by mbxid already exists)

 E_NOID [k] No ID available

Section3 Service Calls

Rev.6.00 148
REJ10B0060-0600

Function:

Service calls cre_mbx and icre_mbx create a mailbox with an ID indicated by mbxid with the
contents indicated by pk_cmbx.

Service calls acre_mbx and iacre_mbx search for an unused mailbox ID and create a mailbox
that has this ID, with the contents specified by parameter pk_cmbx. The created mailbox ID is
returned as a return parameter. The range for searching for an unused mailbox ID is 1 to
CFG_MAXMBXID.

Parameter mbxatr is specified in the following format. See table 3.34 for details.

mbxatr:= ((TA_TFIFO || TA_TPRI) | TA_MFIFO || TA_MPRI))

Table 3.34 Mailbox Attributes (mbxatr)

mbxatr Code Description

TA_TFIFO H'00000000 Message receive wait queue is managed on a FIFO
basis

TA_TPRI H'00000001 Message receive wait queue is managed on priority

TA_MFIFO H'00000000 Message queue is managed on a FIFO basis

TA_MPRI H'00000002 Message queue is managed on priority

When TA_MPRI is specified for mbxatr, NULL must be specified for mprihd. The message-
queue header area is created in the area specified by mprihd when a value other than NULL is
specified by the μITRON4.0 specification. However, the kernel does not support a value other
than NULL. If a value other than NULL is used, normal system operation cannot be guaranteed.
If TA_MPRI is not specified, mprihd does not have any meaning and is simply ignored.

A mailbox can also be created statically by the configurator.

Section3 Service Calls

Rev.6.00 149
REJ10B0060-0600

3.10.2 Delete Mailbox (del_mbx)

C-Language API:
 ER ercd = del_mbx(ID mbxid);

Parameters:
 ID mbxid R4 Mailbox ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (mbxid ≤ 0 or mbxid > CFG_MAXMBXID)

 E_NOEXS [k] Undefined (Mailbox indicated by mbxid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

Service call del_mbx deletes the mailbox indicated by parameter mbxid.

No error will occur even if there is a task waiting for a message in the mailbox indicated by
mbxid. However, in that case, the task in the WAITING state will be released and error code
E_DLT will be returned. If there is a message in the mailbox, no error will occur, but the kernel
will not perform any processing for the message area. For example, the kernel will not
automatically return the message area to the memory pool when a memory block acquired from
the memory pool is used for a message.

Section3 Service Calls

Rev.6.00 150
REJ10B0060-0600

3.10.3 Send Message to Mailbox (snd_mbx, isnd_mbx)

C-Language API:
 ER ercd = snd_mbx(ID mbxid, T_MSG *pk_msg);

 ER ercd = isnd_mbx(ID mbxid, T_MSG *pk_msg);

Parameters:
 ID mbxid R4 Mailbox ID

 T_MSG *pk_msg R5 Start address of the message to be sent

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Packet Structure:
 Mailbox message header

 typedef struct t_msg{

 VP msghead; +0 4 Kernel management area

 }T_MSG;

 Mailbox message header with priority

 typedef struct t_msg_pri{

 T_MSG msgque; +0 4 Message header

 PRI msgpri; +4 2 Message priority

 }T_MSG PRI;

Error Codes:
 E_PAR [p] Parameter error (pk_msg is other than a multiple of four or

the first four bytes of the message is other than 0)

 [k] (msgpri ≤ 0, msgpri > CFG_MAXMSGPRI)

 E_ID [p] Invalid ID number (mbxid ≤ 0, mbxid < 0, or

mbxid > CFG_MAXMBXID)

 E_NOEXS [k] Undefined (Mailbox indicated by mbxid does not exist)

Function:

Each service call sends a message specified by pk_msg to the mailbox specified by mbxid.

If there is a task waiting to receive a message in the mailbox, the task at the head of the wait
queue receives the message and is released from the WAITING state. On the other hand, if there
are no tasks waiting to receive a message, the message specified by pk_msg is linked to the end
of the message queue. The message queue is managed according to the attributes specified at
creation.

To send a message to a mailbox that has the TA_MFIFO attribute, the message must be created
in RAM and must have the T_MSG structure at the head of the message, as shown in figure 3.4.
The contents of T_MSG must be 0 when sending a message.

To send a message to a mailbox that has the TA_MPRI attribute, the message must be created in
RAM and must have the T_MSG_PRI structure at the head of the message, as shown in figure
3.5. The contents of T_MSG must be 0 when sending a message.

Section3 Service Calls

Rev.6.00 151
REJ10B0060-0600

Note that the T_MSG area is used by the kernel; therefore the area must not be modified after
message transfer. If this area is modified, normal system operation cannot be guaranteed.

 typedef struct user_msg {
 T_MSG t_msg; /* T_MSG structure */
 B data[8]; /* Example of user message data structure */
 } USER_MSG;

Figure 3.4 Example of a Message Form

 typedef struct user_msg {
 T_MSG_PRI t_msg; /* T_MSG structure
*/
 B data[8]; /* Example of user message data structure
*/
 } USER_MSG;

Figure 3.5 Example of a Message Form with Priority

Section3 Service Calls

Rev.6.00 152
REJ10B0060-0600

3.10.4 Receive Message from Mailbox (rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx)

C-Language API:
 ER ercd = rcv_mbx(ID mbxid, T_MSG **ppk_msg);

 ER ercd = prcv_mbx(ID mbxid, T_MSG **ppk_msg);

 ER ercd = iprcv_mbx(ID mbxid, T_MSG **ppk_msg);

 ER ercd = trcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout);

Parameters:
 ID mbxid R4 Mailbox ID

 T_MSG **ppk_msg R5 Pointer to the area where the start address of

the received message is to be returned

 <trcv_mbx>

 TMO tmout R6 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_MSG **ppk_msg R5 Pointer to the area where the start address of

the received message is stored

Packet Structure:
 <Mailbox message header>

 typedef struct t_msg{

 VP msghead; +0 4 Kernel management area

 }T_MSG;

 <Mailbox message header with priority>

 typedef struct t_msg_pri{

 T_MSG msgque; +0 4 Message header

 PRI msgpri; +4 2 Message priority

 }T_MSG PRI;

Error Codes:
 E_PAR [p] Parameter error (ppk_msg is other than a multiple of four or

tmout ≤ –2)

 E_ID [p] Invalid ID number (mbxid ≤ 0 or mbxid > CFG_MAXMBXID)

 E_NOEXS [k] Undefined (Mailbox indicated by mbxid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted (Mailbox indicated by mbxid has been

deleted in the WAITING state)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly cancelled

(rel_wai service call was called in the WAITING state)

Section3 Service Calls

Rev.6.00 153
REJ10B0060-0600

Function:

Each service call receives a message from the mailbox specified by parameter mbxid. Then the
start address of the received message is returned to the area indicated by parameter pk_msg.

With service calls rcv_mbx and trcv_mbx, if there are no messages in the mailbox, the task that
called the service call is placed in the wait queue to receive a message. With service calls
prcv_mbx and iprcv_mbx, if there are no messages in the mailbox, error code E_TMOUT is
returned immediately. The wait queue is managed according to the attributes specified at
creation.

Parameter tmout specified by service call trcv_mbx specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
timeout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call prcv_mbx will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words,
the same operation as for service call rcv_mbx will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 154
REJ10B0060-0600

3.10.5 Refer to Mailbox State (ref_mbx, iref_mbx)

C-Language API:
 ER ercd = ref_mbx(ID mbxid , T_RMBX *pk_rmbx);

 ER ercd = iref_mbx(ID mbxid , T_RMBX *pk_rmbx);

Parameters:
 ID mbxid R4 Mailbox ID

 T_RMBX *pk_rmbx R5 Pointer to the area where the mailbox state

is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RMBX *pk_rmbx R5 Pointer to the packet where the mailbox

state is stored

Packet Structure:
 (1) T_RMBX

 typedef struct t_rmbx{

 ID wtskid; +0 2 Wait task ID

 T_MSG *pk_msg; +4 4 Start address of the message to be

received next

 }T_RMBX;

 (2) T_MSG

 <Mailbox message header>

 typedef struct t_msg{

 VP msghead; +0 4 Kernel management area

 }T_MSG;

 <Mailbox message header with priority>

 typedef struct t_msg_pri{

 T_MSG msgque; +0 4 Message header

 PRI msgpri; +4 2 Message priority

 }T_MSG_PRI;

Error Codes:
 E_PAR [p] Parameter error (pk_rmbx is other than a multiple of four)

 E_ID [p] Invalid ID number (mbxid ≤ 0 or mbxid > CFG_MAXMBXID)

 E_NOEXS [k] Undefined (Mailbox indicated by mbxid does not exist)

Section3 Service Calls

Rev.6.00 155
REJ10B0060-0600

Function:

Each service call refers to the state of the mailbox indicated by parameter mbxid.

Service calls ref_mbx and iref_mbx return the wait task ID (wtskid) and the start address of the
message to be received next (pk_msg) to the area indicated by pk_rmbx.

If there is no task waiting for the specified message, TSK_NONE (0) is returned as a wait task
ID.

If there is no message to be received next, NULL (0) is returned as a message start address.

Section3 Service Calls

Rev.6.00 156
REJ10B0060-0600

3.11 Synchronization and Communication (Mutex)
Mutex Service Calls: Mutexes are controlled by the service calls listed in table 3.35.

Table 3.35 Service Calls for Mutex Control

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mtx Creates mutex T/E/D/U

acre_mtx Creates mutex and assigns mutex ID
automatically

T/E/D/U

del_mtx Deletes mutex T/E/D/U

loc_mtx Locks mutex T/E/U

ploc_mtx Polls and locks mutex T/E/D/U

tloc_mtx Locks mutex with timeout function T/E/U

unl_mtx Unlocks mutex T/E/D/U

ref_mtx Refers to mutex state T/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Mutex Specifications: The mutex specifications are listed in table 3.36.

Table 3.36 Mutex Specifications

Item Description

Mutex ID 1 to CFG_MAXMTXID (1023 max.)

Attribute supported TA_CEILING (Ceiling priority protocol)

Note: When the TA_CEILING attribute is specified, the mutex is managed by "simplified priority
control rule". Under this rule, the management which changes the task's current priority to
higher value is always operated, but the management which changes the task's priority to
lower value is not operated only when the task releases all of mutexes.

Section3 Service Calls

Rev.6.00 157
REJ10B0060-0600

3.11.1 Create Mutex
(cre_mtx)
(acre_mtx: Assign Mutex ID Automatically)

C-Language API:
 ER ercd = cre_mtx(T_CMTX *pk_cmtx);

 ER_ID mtxid = acre_mtx(T_CMTX *pk_cmtx);

Parameters:
 <cre_mtx>

 ID mtxid R4 Mutex ID

 T_CMTX *pk_cmtx R5 Pointer to the packet where the mutex

creation information is stored

 <acre_mtx >

 T_CMTX *pk_cmtx R4 Pointer to the packet where the mutex

creation information is stored

Return Parameters:
 <cre_mtx>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_mtx>

 ER_ID mtxid R0 Created mutex ID (a positive value) or

error code

Packet Structure:
 typedef struct t_cmtx{

 ATR mtxatr; +0 4 Mutex attribute

 PRI ceilpri; +4 2 Ceiling priority of mutex

 }T_CMTX;

Error Codes:
 E_RSATR [p] Invalid attribute (mtxatr is invalid)

 E_PAR [p] Parameter error (pk_cmtx is other than a multiple of four

ceilpri ≤ 0 ceilpri > CFG_MAXTSKPRI)

 E_ID [p] Invalid ID number (mtxid ≤ 0 or mtxid > CFG_MAXMTXID)

 E_OBJ [k] Object status is invalid

(Mutex indicated by mtxid already exists)

 E_NOID [k] No ID available

Section3 Service Calls

Rev.6.00 158
REJ10B0060-0600

Function:

Service call cre_mtx creates a mutex that has the ID specified by mtxid and with the contents
specified by pk_cmtx.

Service call acre_mtx searches for an unused mutex ID and creates a mutex having that ID and
with the contents specified by pk_cmtx, and returns the ID as a return parameter. The range for
searching for an unused mutex ID is from 1 to CFG_MAXMTXID.

As the mtxatr attribute, only the ceiling priority protocol (TA_CEILING) can be specified.

mtxatr := (TA_CEILING)

Table 3.37 Mutex Attribute (mtxatr)

mtxatr Code Description

TA_CEILING H'00000003 Ceiling priority protocol

ceilpri specifies the ceiling priority for the mutex to be created. The range of values which can
be specified is 1 to CFG_MAXTSKPRI.

A mutex can also be created statically by the configurator.

Section3 Service Calls

Rev.6.00 159
REJ10B0060-0600

3.11.2 Delete Mutex (del_mtx)

C-Language API:
 ER ercd = del_mtx(ID mtxid);

Parameters:
 ID mtxid R4 Mutex ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (mtxid ≤ 0 or mtxid > CFG_MAXMTXID)

 E_NOEXS [k] Undefined (Mutex indicated by mtxid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

Service call del_mtx deletes the mutex specified by parameter mtxid.

No error occurs even when there is a lock-waiting task for the mutex specified by mtxid; but the
WAITING state of the task is cancelled, and E_DLT is returned as an error code.

When the target mutex is locked, the lock for the task locked by the mutex is cancelled. As a
result, only when all mutexes locking the task are removed, the task priority is returned to base
priority.

The task locked by the deleted mutex is not notified that the mutex has been deleted. If an
attempt is later made to release the mutex lock, an error is returned.

Section3 Service Calls

Rev.6.00 160
REJ10B0060-0600

3.11.3 Lock Mutex (loc_mtx, ploc_mtx, tloc_mtx)

C-Language API:
 ER ercd = loc_mtx(ID mtxid);

 ER ercd = ploc_mtx(ID mtxid);

 ER ercd = tloc_mtx(ID mtxid, TMO tmout);

Parameters:
 ID mtxid R4 Mutex ID

 <tloc_mtx>

 TMO tmout R5 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tmout ≤ –2)

 E_ID [p] Invalid ID (mtxid ≤ 0, mtxid > CFG_MAXMTXID)

 E_NOEXS [k] Undefined (Mutex indicated by mtxid does not exist)

 E_ILUSE [k] Illegal use of service call (The mutex specified by

mtxid is already locked by the calling task, or the base

priority of the calling task is less than the ceiling

priority of the target mutex.)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted (Mutex indicated by mtxid has

been deleted in the WAITING state)

 E_RLWAI [k] The WAITING state was forcibly cancelled

(rel_wai service call was called in the WAITING state)

 E_TMOUT [k] Polling failed or timeout

Function:

Service calls loc_mtx, ploc_mtx and tloc_mtx lock the mutex specified by parameter mtxid.

If the target mutex is not locked, the current task locks the mutex, and the service call processing
is completed. At this time, the priority of the current task is raised to the ceiling priority of the
mutex.

If the target mutex is locked, the current task is placed in a wait queue, and the current task
enters the mutex lock-wait state. The wait queue is managed in priority order.

Parameter tmout specified by service call tloc_mtx specifies the timeout period.

If a positive value is specified for parameter tmout, error code E_TMOUT is returned when the
timeout period has passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call ploc_mtx will be
performed.

Section3 Service Calls

Rev.6.00 161
REJ10B0060-0600

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words,
the same operation as for service call loc_mtx will be performed.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick
cycles), the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 162
REJ10B0060-0600

3.11.4 Unlock Mutex (unl_mtx)

C-Language API:
 ER ercd = unl_mtx(ID mtxid);

Parameters:
 ID mtxid R4 Mutex ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID (mtxid ≤ 0, mtxid > CFG_MAXMTXID)

 E_NOEXS [k] Undefined (Mutex indicated by mtxid does not exist)

 E_ILUSE [k] Illegal use of service call (Duplicate lock of mutex or

highest priority is exceeded)

 E_CTX [k] Context error (Called from disabled system state)

Function:

The lock for the mutex specified by mtxid is released. If there are tasks waiting for the lock for
the specified mutex, the WAITING state for the task at the head of the mutex wait queue is
released, and the task whose WAITING state has been released is put into a state which locks
the mutex. At this time, the priority of the locking task is raised to the ceiling priority of the
mutex. If there are no tasks waiting for the mutex, the mutex is put into the unlocked state.

The simplified priority ceiling protocol is used for the TA_CEILING attribute of this kernel.
That is, only when all the mutex that are locked by the task are unlocked, the present priority of
the task is returned to a base priority. When the task still locks other mutex after this call, the
present priority does not change in this service call.

Section3 Service Calls

Rev.6.00 163
REJ10B0060-0600

3.11.5 Refer to Mutex State (ref_mtx)

C-Language API:
 ER ercd = ref_mtx(ID mtxid, T_RMTX *pk_rmtx);

Parameters:
 ID mtxid R4 Mutex ID

 T_RMTX *pk_rmtx R5 Pointer to the area where the mutex status

is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RMTX *pk_rmtx R5 Pointer to the packet where the mutex

status is stored

Packet Structure:
 typedef struct t_rmtx{

 ID htskid; +0 2 Task ID locking a mutex

 ID wtskid; +2 2 Start task ID of mutex waiting queue

 }T_RMTX;

Error Codes:
 E_PAR [p] Parameter error (pk_rmtx is other than a multiple of four)

 E_ID [p] Invalid ID number (mtxid ≤ 0 or mtxid > CFG_MAXMTXID)

 E_NOEXS [k] Undefined (Mutex indicated by mtxid does not exist)

Function:

Service call ref_mtx refers to the state of the mutex. Service call ref_mtx returns the task ID that
locks the mutex (htskid) and the start task ID of the mutex wait queue (wtskid) to the area
indicated by pk_rmtx. If there is no task that locks the target mutex, TSK_NONE (0) is returned
to the htskid. If there is no task waiting for the target mutex, TSK_NONE (0) is returned to the
wtskid.

Section3 Service Calls

Rev.6.00 164
REJ10B0060-0600

3.12 Extended Synchronization and Communication (Message Buffer)
Message Buffer Service Calls: Message Buffers are controlled by the service calls listed in
table 3.38.

Table 3.38 Service Calls for Message Buffer Control

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mbf T/E/D/U

icre_mbf

Creates message buffer

N/E/D/U

acre_mbf T/E/D/U

iacre_mbf

Creates message buffer and assigns message
buffer ID automatically N/E/D/U

del_mbf Deletes message buffer T/E/D/U

snd_mbf Sends message to message buffer T/E/U

psnd_mbf T/E/D/U

ipsnd_mbf

Polls and sends message to message buffer

N/E/D/U

tsnd_mbf Sends message to message buffer with timeout
function

T/E/U

rcv_mbf Receives message from message buffer T/E/U

prcv_mbf Polls and receives message from message buffer T/E/D/U

trcv_mbf Receives message from message buffer with
timeout function

T/E/U

ref_mbf T/E/D/U

iref_mbf

Refers to message buffer state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 165
REJ10B0060-0600

Message Buffer Specifications: The message buffer specifications are listed in table 3.39.

Table 3.39 Message Buffer Specifications

Item Description

Message buffer ID 1 to CFG_MAXMBFID (1023 max.)

Attribute supported TA_TFIFO: Task queue waiting for sending a message is managed on a
FIFO basis
TA_TPRI: Task queue waiting for sending a message is managed on
priority

Section3 Service Calls

Rev.6.00 166
REJ10B0060-0600

3.12.1 Create Message Buffer

(cre_mbf, icre_mbf)

(acre_mbf, iacre_mbf: Assign Message Buffer ID Automatically)

C-Language API:
 ER ercd = cre_mbf(ID mbfid, T_CMBF *pk_cmbf);

 ER ercd = icre_mbf(ID mbfid, T_CMBF *pk_cmbf);

 ER_ID mbfid = acre_mbf(T_CMBF *pk_cmbf);

 ER_ID mbfid = iacre_mbf(T_CMBF *pk_cmbf);

Parameters:
 <cre_mbf, icre_mbf>

 ID mbfid R4 Message buffer ID

 T_CMBF *pk_cmbf R5 Pointer to the packet where the message buffer

creation information is stored

 <acre_mbf, iacre_mbf>

 T_CMBF *pk_cmbf R4 Pointer to the packet where the message buffer

creation information is stored

Return Parameters:
 <cre_mbf, icre_mbf>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_mbf, iacre_mbf>

 ER_ID mbfid R0 Created message buffer ID (a positive value) or

error code

Packet Structure:
 typedef struct t_cmbf{

 ATR mbfatr; +0 4 Message buffer attribute

 UINT maxmsz; +4 4 Maximum message size (Number of bytes)

 SIZE mbfsz; +8 4 Message buffer size (Number of bytes)

 VP mbf; +12 4 Start address of message buffer area

 }T_CMBF;

Error Codes:
 E_NOMEM [k] Insufficient memory (Message buffer area cannot be allocated

in the memory)

 E_RSATR [p] Invalid attribute (mbfatr is invalid)

 E_PAR [p] Parameter error (pk_cmbf is other than a multiple of four,

mbfsz is other than a multiple of four, maxmsz = 0,

maxmsz ≥ H'80000000, or mbfsz is other than 0 and maxmsz + 4 >

mbfsz)

 E_ID [p] Invalid ID number (mbfid ≤ 0 or mbfid > CFG_MAXMBFID)

 E_OBJ [k] Object status is invalid

(Message buffer indicated by mbfid already exists)

 E_NOID [k] No ID available

Section3 Service Calls

Rev.6.00 167
REJ10B0060-0600

Function:

Service calls cre_mbf and icre_mbf create a message buffer with an ID indicated by mbfid with
the contents specified by pk_cmbf.

Service calls acre_mbf and iacre_mbf search for an unused message buffer ID and create a
message buffer that has this ID, with the contents specified by parameter pk_cmbf. The created
event flag ID is returned as a return parameter. The range for searching for an unused message
buffer ID is 1 to CFG_MAXMBFID.

Parameter mbfatr is specified in the following format. See table 3.40 for details.

mbfatr:= (TA_TFIFO || TA_TPRI)

Table 3.40 Message Buffer Attributes (mbfatr)

mbfatr Code Description

TA_TFIFO H'00000000 Task queue waiting for sending a message is managed on a FIFO
basis

TA_TPRI H'00000001 Task queue waiting for sending a message is managed on priority

The message queue and the task queue waiting for sending a message are managed on a first-in
first-out (FIFO) basis regardless of the mbfatr specification.

A message buffer is created in the message buffer area (CFG_MBFSZ) specified by the
configurator. After the message buffer has been created, the free message buffer area size will
decrease by the amount given by the following expression:

Decrease in size = mbfsz + 16 bytes

Section3 Service Calls

Rev.6.00 168
REJ10B0060-0600

Parameter mbfsz specifies the size of the message buffer to be created. This must be a multiple
of four and equal to or more than the minimum buffer size (8 bytes). When calculating the
message buffer size, remember that 4 bytes of management area for the kernel is added when
one message is stored. A message buffer of mbfsz = 0 can also be created. In this case, no
message can be stored in the message buffer, and the message-receiving task completely
synchronizes with the message sending task. In other words, when a service call to send a
message is called, the task stays in the WAITING state until another task calls a service call to
receive a message. Similarly, when a task calls a service call to receive a message the task stays
in the WAITING state until another task calls a service call to send a message. Note that for a
message buffer with mbfsz = 0, there will be no copying via the message buffer.

Parameter maxmsz specifies the maximum message size that can be received by the created
message buffer.

NULL must be specified for parameter mbf. The message buffer is created in the area specified
by mbf by the μITRON4.0 specification. However, the kernel does not support a value other
than NULL. If a value other than NULL is used, normal system operation cannot be guaranteed.

A message buffer can also be created statically by the configurator.

Section3 Service Calls

Rev.6.00 169
REJ10B0060-0600

3.12.2 Delete Message Buffer (del_mbf)

C-Language API:
 ER ercd = del_mbf(ID mbfid);

Parameters:
 ID mbfid R4 Message buffer ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (mbfid ≤ 0 or mbfid > CFG_MAXMBFID)

 E_NOEXS [k] Undefined (Message buffer indicated by mbfid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

Service call del_mbf deletes the message buffer indicated by parameter mbfid.

No error will occur even if there is a task waiting for receiving or sending a message in the
message buffer indicated by mbfid. However, in that case, the task in the WAITING state will
be released and error code E_DLT will be returned. In addition, if there is a message in the
message buffer, no error will occur, but all stored messages will be deleted.

The size of the free message buffer area will increase by an amount given by the following
expression after a message buffer is deleted.

Increase in size = mbfsz defined at creation + 16 bytes

Section3 Service Calls

Rev.6.00 170
REJ10B0060-0600

3.12.3 Send Message to Message Buffer (snd_mbf, psnd_mbf, ipsnd_mbf, tsnd_mbf)

C-Language API:
 ER ercd = snd_mbf(ID mbfid, VP msg, UINT msgsz);

 ER ercd = psnd_mbf(ID mbfid, VP msg, UINT msgsz);

 ER ercd = ipsnd_mbf(ID mbfid, VP msg, UINT msgsz);

 ER ercd = tsnd_mbf(ID mbfid, VP msg, UINT msgsz, TMO tmout);

Parameters:
 ID mbfid R4 Message buffer ID

 VP msg R5 Start address of the message to send

 UINT msgsz R6 Size of the message to send (number of

bytes)

 <tsnd_mbf>

 TMO tmout R7 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (msg is other than a multiple of four,

msgsz = 0, or tmout ≤ –2)

 [k] (msgsz > maxmsz*)

 E_ID [p] Invalid ID number (mbfid ≤ 0 or mbfid > CFG_MAXMBFID)

 E_NOEXS [k] Undefined (Message buffer indicated by mbfid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted (Message buffer indicated by mbfid

has been deleted during the WAITING state)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly cancelled

(rel_wai service call was called in the WAITING state)

Note: maxmsz: Maximum message size specified at message buffer creation

Function:

Each service call sends a message specified by msg to the message buffer specified by mbfid.
The message size is specified by parameter msgsz.

If there are no tasks waiting to send a message but there is a task waiting to receive a message,
the message sent by the service call is not placed in the message buffer. Instead, the message is
passed to the task at the head of the receive wait queue, releasing the task from the WAITING
state.

Section3 Service Calls

Rev.6.00 171
REJ10B0060-0600

If there are already tasks waiting to send a message to the message buffer, the task that called
service call snd_mbf or tsnd_mbf is placed in the queue to wait for free space in the message
buffer. With service calls psnd_mbf and ipsnd_mbf, error code E_TMOUT is immediately
returned. The wait queue is managed according to the attribute specified at task creation.

If there are no tasks waiting to send or receive a message, the message sent from a task is stored
in the message buffer.

After the message has been stored in the message buffer, the size of the message buffer free
space will decrease by an amount given by the following expression:

Decrease in size = msgsz + 4 bytes

However, if the free space in the message buffer is less than the above size (including when the
buffer size is 0), the task that called the service call is placed in the queue to wait for message
buffer free space.

ipsnd_mbf can also be issued from a non-task context. Since the priority of a non-task context is
higher than that of a task, when the target message buffer has TA_TPRI attribute and the buffer
has enough free size for required size (msgsz + 4), the specified message is copied to the buffer
even if there exists a task that has been waiting to be transmitted.

In service call tsnd_mbf, parameter tmout specifies the timeout time. If a positive value is
specified for parameter tmout, error code E_TMOUT is returned when the tmout time has
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call psnd_mbf will be
performed.

If tmout = TMO_FEVR (–1) is specified, the same operation as for service call snd_mbf will be
performed. In other words, timeout monitoring is not performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 172
REJ10B0060-0600

3.12.4 Receive Message from Message Buffer (rcv_mbf, prcv_mbf, trcv_mbf)

C-Language API:
 ER_UINT msgsz = rcv_mbf(ID mbfid, VP msg);

 ER_UINT msgsz = prcv_mbf(ID mbfid, VP msg);

 ER_UINT msgsz = trcv_mbf(ID mbfid, VP msg, TMO tmout);

Parameters:
 ID mbfid R4 Message buffer ID

 VP msg R5 Start address of the area where the

received message is to be returned

 <trcv_mbf>

 TMO tmout R6 Timeout specification

Return Parameters:
 ER_UINT msgsz R0 Size of the received message (number of

bytes, a positive value) or error code

 VP msg R5 Start address of the area where the

received message is stored

Error Codes:
 E_PAR [p] Parameter error (msg is other than a multiple of four or

tmout ≤ –2)

 E_ID [p] Invalid ID number (mbfid ≤ 0 or mbfid > CFG_MAXMBFID)

 E_NOEXS [k] Undefined (Message buffer indicated by mbfid does not exist)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted (Target message buffer indicated by

mbfid has been deleted during the WAITING state)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state is forcibly cancelled

(rel_wai service call was called in the WAITING state)

Function:

Each service call receives a message from the message buffer specified by parameter mbfid and
stores the received message in the area indicated by msg. The received message size is returned
as the return parameter.

If there are already messages in the message buffer, the task receives the message of the head of
the queue (the oldest message).

After the message has been received, the free space size of the message buffer will increase by
an amount given by the following expression:

Increase in size = msgsz + 4 bytes

Section3 Service Calls

Rev.6.00 173
REJ10B0060-0600

If, as a result, the free space in the message buffer becomes larger than the size of the message to
be sent by the task at the head of the send wait queue, the message is sent and stored in the
message buffer and the task is released from the WAITING state. The same will be done for the
remaining tasks in the order of the wait queue if the message can be stored.

If there are no messages in the message buffer and there are tasks waiting to send a message, the
message of the task at the head of the wait queue is received by the service call. As a result, the
task is released from the WAITING state.

If there are no messages in the message buffer and there are no tasks in the queue to send a
message, the task that called service call rcv_mbf or trcv_mbf is placed in the wait queue to
receive a message. With service call prcv_mbf, error code E_TMOUT is immediately returned.
The wait queue is managed on FIFO basis.

The msg points to a RAM area specified with the maxmsz size by service call cre_mbf,
icre_mbf, acre_mbf, or iacre_mbf.

In service call trcv_mbf, parameter tmout specifies the timeout time. If a positive value is
specified for parameter tmout, error code E_TMOUT is returned when the tmout time has
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call prcv_mbf will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words,
the same operation as for service call rcv_mbf will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 174
REJ10B0060-0600

3.12.5 Refer to Message Buffer State (ref_mbf, iref_mbf)

C-Language API:
 ER ercd = ref_mbf(ID mbfid, T_RMBF *pk_rmbf);

 ER ercd = iref_mbf(ID mbfid, T_RMBF *pk_rmbf);

Parameters:
 ID mbfid R4 Message buffer ID

 T_RMBF *pk_rmbf R5 Pointer to the packet where the message

buffer state is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RMBF *pk_rmbf R5 Pointer to the packet where the message

buffer state is stored

Packet Structure:
 typedef struct t_rmbf{

 ID stskid; +0 2 Start task ID of the queue waiting to

send a message

 ID rtskid; +2 2 Start task ID of the queue waiting to

receive a message

 UINT smsgcnt; +4 4 Number of messages in message buffer

 SIZE fmbfsz; +8 4 Size of free buffer (Number of bytes)

 }T_RMBF;

Error Codes:
 E_PAR [p] Parameter error (pk_rmbf is other than a multiple of four)

 E_ID [p] Invalid ID number (mbfid ≤ 0 or mbfid > CFG_MAXMBFID)

 E_NOEXS [k] Undefined (Message buffer indicated by mbfid does not exist)

Function:

Each service call refers to the state of the message buffer indicated by parameter mbfid and
returns the task ID of the task waiting to send a message (stskid), task waiting to receive a
message (rtskid), the size of the next message to be received (smsgcnt), and the available free
buffer size (fmbfsz) to the area indicated by pk_rmbf.

If no task is waiting to receive or send a message, TSK_NONE (0) is returned as a wait task ID.

Section3 Service Calls

Rev.6.00 175
REJ10B0060-0600

3.13 Memory Pool Management (Fixed-Size Memory Pool)
Fixed-Size Memory Pool Service Calls: Fixed-size memory pools are controlled by the service
calls listed in table 3.41.

Table 3.41 Service Calls for Fixed-Size Memory Pool Control

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mpf [s] T/E/D/U

icre_mpf

Creates fixed-size memory pool

 N/E/D/U

acre_mpf T/E/D/U

iacre_mpf

Creates fixed-size memory pool and assigns fixed-size
memory pool ID automatically N/E/D/U

del_mpf Deletes fixed-size memory pool T/E/D/U

get_mpf [S] Acquires fixed-size memory block T/E/U

pget_mpf [S] T/E/D/U

ipget_mpf

Polls and acquires fixed-size memory block

N/E/D/U

tget_mpf [S] Acquires fixed-size memory block with timeout function T/E/U

rel_mpf [S] T/E/D/U

irel_mpf

Returns fixed-size memory block

N/E/D/U

ref_mpf T/E/D/U

iref_mpf

Refers to fixed-size memory pool state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Fixed-Size Memory Pool Specifications: The fixed-size memory pool specifications are listed
in table 3.42.

Table 3.42 Fixed-Size Memory Pool Specifications

Item Description

Fixed-size memory pool ID 1 to CFG_MAXMPFID (1023 max.)

Attribute supported TA_TFIFO: Task wait queue is managed on a FIFO basis
TA_TPRI: Task wait queue is managed on priority

Management method Whether to place kernel management information in the memory
pool can be chosen with CFG_MPFMANAGE in the configurator.

Section3 Service Calls

Rev.6.00 176
REJ10B0060-0600

3.13.1 Create Fixed-Size Memory Pool

(cre_mpf, icre_mpf)

(acre_mpf, iacre_mpf: Assign Memory Pool ID Automatically)

C-Language API:
 ER ercd = cre_mpf(ID mpfid, T_CMPF *pk_cmpf);

 ER ercd = icre_mpf(ID mpfid, T_CMPF *pk_cmpf);

 ER_ID mpfid = acre_mpf(T_CMPF *pk_cmpf);

 ER_ID mpfid = iacre_mpf(T_CMPF *pk_cmpf);

Parameters:
 <cre_mpf, icre_mpf>

 ID mpfid R4 Fixed-size memory pool ID

 T_CMPF *pk_cmpf R5 Pointer to the packet where the fixed-size

memory pool creation information is stored

 <acre_mpf, iacre_mpf>

 T_CMPF *pk_cmpf R4 Pointer to the packet where the fixed-size

memory pool creation information is stored

Return Parameters:
 <cre_mpf, icre_mpf>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_mpf, iacre_mpf>

 ER_ID mpfid R0 Created fixed-size memory pool ID (a

positive value) or error code

Packet Structure:
(1) CFG_MPFMANAGE is not checked

 typedef struct t_cmpf{

 ATR mpfatr; +0 4 Fixed-size memory pool attribute

 UINT blkcnt; +4 4 Number of blocks in memory pool

 UINT blksz; +8 4 Block size of fixed-size memory pool

(Number of bytes)

 VP mpf; +12 4 Start address of the fixed-size

memory pool area

 }T_CMPF;

(2) CFG_MPFMANAGE is checked

 typedef struct t_cmpf{

 ATR mpfatr; +0 4 Fixed-size memory pool attribute

 UINT blkcnt; +4 4 Number of blocks in memory pool

 UINT blksz; +8 4 Block size of fixed-size memory pool

(Number of bytes)

Section3 Service Calls

Rev.6.00 177
REJ10B0060-0600

 VP mpf; +12 4 Start address of the fixed-size

memory pool area

 VP mpfmb; +16 4 Start address of the fixed-size

memory pool management table area

 }T_CMPF;

Error Codes:
 E_NOMEM [k] Insufficient memory (Memory pool area cannot be allocated in

the memory)

 E_RSATR [p] Invalid attribute (mpfatr is invalid)

 E_PAR [p] Parameter error (pk_cmpf is other than a multiple of four,

blkcnt = 0, blksz is other than a multiple of four or

blksz = 0, mpf is other than a multiple of four if mpf is

not NULL, or mpfmb is other than a multiple of four (when

CFG_MPFMANAGE is checked)

 [k] TSZ_MPF(blkcnt, blksz) exceeds 32-bit range)

 E_ID [p] Invalid ID number (mpfid ≤ 0 or mpfid > CFG_MAXMPFID)

 E_OBJ [k] Object status is invalid

(Fixed-size memory pool indicated by mpfid already exists)

 E_NOID [k] No ID available

Function:

Service calls cre_mpf and icre_mpf create a fixed-size memory pool, with an ID indicated by
mpfid, using the contents specified by pk_cmpf.

Service calls acre_mpf and iacre_mpf search for an unused fixed-size memory pool ID and
creates a fixed-size memory pool that has this ID with the contents specified by parameter
pk_cmpf. The service calls then return the ID as a return parameter. The range to search for an
undefined fixed-size memory pool ID is 1 to CFG_MAXMPFID.

The queue order waiting to get a memory block as an attribute is specified by mpfatr in the
following format (table 3.43).

mpfatr:= (TA_TFIFO || TA_TPRI)

Table 3.43 Fixed-Size Memory Pool Attributes (mpfatr)

mpfatr Code Description

TA_TFIFO H'00000000 Task queue waiting to acquire a memory block is
managed on a FIFO basis

TA_TPRI H'00000001 Task queue waiting to acquire a memory block is
managed by priority

Section3 Service Calls

Rev.6.00 178
REJ10B0060-0600

Parameter blkcnt specifies the total number of memory blocks to be created.

The size of the memory block to be created is specified by blksz, and must be a multiple of four.

When NULL is specified as mpf, kernel allocates memory pool from fixed-size memory pool
area (CFG_MPFSZ). After the memory pool has been created, the free fixed-size memory pool
area size will decrease by an amount given by the following expression:

(1) CFG_MPFMANAGE is not checked
Decrease in size = (blksz + 4 bytes) × blkcnt + 16 bytes

(2) CFG_MPFMANAGE is checked
Decrease in size = blksz × blkcnt + 16 bytes

The memory pool area address allocated by application can be specified as mpf. In this case,
allocate the memory pool area which size is calculated by TSZ_MPF(blkcnt, blksz), and specify
the address as mpf. Note, the definition of TSZ_MPF is depend on CFG_MPFMANAGE.

If the CFG_MPFMANAGE is checked, the address for kernel management tables must be
specified as mpfmb. In this case, allocate the area which size is calculated by
VTSZ_MPFMB(blkcnt, blksz), and specify the address as mpfmb.

mpfmb is a member not specified in the μITRON4.0 specification.

Fixed-size memory pools can also be created statically by the configurator.

Section3 Service Calls

Rev.6.00 179
REJ10B0060-0600

3.13.2 Delete Fixed-Size Memory Pool (del_mpf)

C-Language API:
 ER ercd = del_mpf(ID mpfid);

Parameters:
 ID mpfid R4 Fixed-size memory pool ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (mpfid ≤ 0 or mpfid > CFG_MAXMPFID)

 E_NOEXS [k] Undefined (Fixed-size memory pool indicated by mpfid does

not exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

Service call del_mpf deletes the fixed-size memory pool indicated by mpfid.

No error will occur even if there is a task waiting to acquire a memory block in the fixed-size
memory pool area indicated by mpfid. However, in that case, the task in the WAITING state
will be released and error code E_DLT will be returned.

When the memory pool allocated in the fixed-size memory pool that is created with NULL as
mpf is deleted, the free fixed-size memory pool area (CFG_MPFSZ) will increase by an amount
given by the following expression:

(1) CFG_MPFMANAGE is not checked
Increase in size = ((blksz specified at creation) + 4 bytes) × blkcnt + 16 bytes

(2) CFG_MPFMANAGE is checked
Increase in size = (blksz specified at creation) × blkcnt + 16 bytes

The kernel will not perform any processing even when a block has already been acquired.

Section3 Service Calls

Rev.6.00 180
REJ10B0060-0600

3.13.3 Get Fixed-Size Memory Block (get_mpf, pget_mpf, ipget_mpf, tget_mpf)

C-Language API:
 ER ercd = get_mpf(ID mpfid, VP *p_blk);

 ER ercd = pget_mpf(ID mpfid, VP *p_blk);

 ER ercd = ipget_mpf(ID mpfid, VP *p_blk);

 ER ercd = tget_mpf(ID mpfid, VP *p_blk, TMO tmout);

Parameters:
 ID mpfid R4 Fixed-size memory pool ID

 VP *p_blk R5 Pointer to the area where the start

address of the memory block is to be

returned

 <tget_mpf>

 TMO tmout R6 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 VP *p_blk R5 Start address of the area where the start

address of the memory block is stored

Error Codes:
 E_PAR [p] Parameter error (p_blk is other than a multiple of four or

tmout ≤ –2)

 E_ID [p] Invalid ID number (mpfid ≤ 0 or mpfid > CFG_MAXMPFID)

 E_NOEXS [k] Undefined (Fixed-size memory pool indicated by mpfid does

not exist)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted

(Fixed-size memory pool indicated by mpfid has been deleted)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state was forcibly cancelled

(rel_wai service call was called in the WAITING state)

Section3 Service Calls

Rev.6.00 181
REJ10B0060-0600

Function:

Each service call gets one fixed-size memory block from the fixed-size memory pool indicated
by mpfid, and returns the start address of the acquired memory block to the area indicated by
p_blk.

If there are tasks already waiting for the memory pool, or if no task is waiting but there is no
memory block available in the fixed-size memory pool, the task having called service call
get_mpf or tget_mpf is placed in the memory acquiring wait queue, and the task having called
service call pget_mpf or ipget_mpf is immediately returned with error code E_TMOUT. The
queue is managed according to the attribute specified at creation.

Parameter tmout of service call tget_mpf specifies the timeout period. If a positive value is
specified for parameter tmout, error code E_TMOUT is returned when the timeout period has
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pget_mpf will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout monitoring is not performed. In other words,
the same operation as for service call get_mpf will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 182
REJ10B0060-0600

3.13.4 Release Fixed-Size Memory Block (rel_mpf, irel_mpf)

C-Language API:
 ER ercd = rel_mpf(ID mpfid, VP blk);

 ER ercd = irel_mpf(ID mpfid, VP blk);

Parameters:
 ID mpfid R4 Fixed-size memory pool ID

 VP blk R5 Start address of memory block

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (blk is other than a multiple or four)

 [k] (Specifies other than the start address of the memory block

or returned blk)

 E_ID [p] Invalid ID number (mpfid ≤ 0 or mpfid > CFG_MAXMPFID)

 E_NOEXS [k] Undefined (Fixed-size memory pool indicated by mpfid does

not exist)

Function:

Each service call returns the memory block indicated by blk to the fixed-size memory pool
indicated by mpfid.

The start address of the memory block acquired by service call get_mpf, pget_mpf, ipget_mpf,
or tget_mpf must be specified for parameter blk.

If there are tasks waiting to get a memory block in the target fixed-size memory pool, the
memory block returned by this service call is passed to the task at the head of the wait queue,
releasing it from the WAITING state.

Section3 Service Calls

Rev.6.00 183
REJ10B0060-0600

3.13.5 Refer to Fixed-Size Memory Pool State (ref_mpf, iref_mpf)

C-Language API:
 ER ercd = ref_mpf(ID mpfid, T_RMPF *pk_rmpf);

 ER ercd = iref_mpf (ID mpfid, T_RMPF *pk_rmpf);

Parameters:
 ID mpfid R4 Fixed-size memory pool ID

 T_RMPF *pk_rmpf R5 Pointer to the packet where the fixed-size

memory pool state is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RMPF *pk_rmpf R5 Pointer to the packet where the fixed-size

memory pool state is stored

Packet Structure:
 typedef struct t_rmpf{

 ID wtskid; +0 2 Wait task ID

 UINT fblkcnt; +4 4 Number of blocks of memory space

available

 }T_RMPF;

Error Codes:
 E_PAR [p] Parameter error (pk_rmpf is other than a multiple of four)

 E_ID [p] Invalid ID number (mpfid ≤ 0 or mpfid > CFG_MAXMPFID)

 E_NOEXS [k] Undefined (Fixed-size memory pool indicated by mpfid does

not exist)

Function:

Each service call refers to the state of the fixed-size memory pool indicated by mpfid.

Service calls ref_mpf and iref_mpf return the wait task ID (wtskid) and the number of blocks of
memory space available (fblkcnt) to the area indicated by pk_rmpf.

If there is no task waiting for the specified memory pool, TSK_NONE (0) is returned as a wait
task ID.

Section3 Service Calls

Rev.6.00 184
REJ10B0060-0600

3.14 Memory Pool Management (Variable-Size Memory Pool)
Variable-Size Memory Pool Service Calls: Variable-size memory pools are controlled by the
service calls listed in table 3.44.

Table 3.44 Service Calls for Variable-Size Memory Pool Control

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_mpl T/E/D/U

icre_mpl

Creates variable-size memory pool

N/E/D/U

acre_mpl T/E/D/U

iacre_mpl

Creates variable-size memory pool and assigns
variable-size memory pool ID automatically N/E/D/U

del_mpl Deletes variable-size memory pool T/E/D/U

get_mpl Acquires variable-size memory block T/E/U

pget_mpl T/E/D/U

ipget_mpl

Polls and acquires variable-size memory block

N/E/D/U

tget_mpl Acquires variable-size memory block with timeout
function

T/E/U

rel_mpl T/E/D/U

irel_mpl

Returns variable-size memory block

N/E/D/U

ref_mpl T/E/D/U

iref_mpl

Refers to variable-size memory pool state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 185
REJ10B0060-0600

Variable-Size Memory Pool Specifications: The variable-size memory pool specifications are
listed in table 3.45.

Table 3.45 Variable-Size Memory Pool Specifications

Item Description

Variable-size memory pool ID 1 to CFG_MAXMPLID (1023 max.)

Management method Selecting CFG_NEWMPL through the configurator improves
the following.

• Acquisition and return of memory blocks become faster

when a large number of memory blocks are used in the
memory pool

• The VTA_UNFRAGMENT attribute can be used to
reduce fragmentation of free space.

Attributes supported TA_TFIFO: Task wait queue is managed on a FIFO basis

VTA_UNFRAGMENT: Sector management (reducing
fragmentation in free space; can be specified only when
CFG_NEWMPL is selected)

The free space in the variable-size memory pool may be fragmented. The
VTA_UNFRAGMENT reduces this fragmentation. Also refer to section 2.15.2, Controlling
Fragmentation of Free Space.

Section3 Service Calls

Rev.6.00 186
REJ10B0060-0600

3.14.1 Create Variable-Size Memory Pool

(cre_mpl, icre_mpl)

(acre_mpl, iacre_mpl: Assign Variable-Size Memory Pool ID Automatically)

C-Language API:
 ER ercd = cre_mpl(ID mplid, T_CMPL *pk_cmpl);

 ER ercd = icre_mpl(ID mplid, T_CMPL *pk_cmpl);

 ER_ID mplid = acre_mpl(T_CMPL *pk_cmpl);

 ER_ID mplid = iacre_mpl(T_CMPL *pk_cmpl);

Parameters:
 <cre_mpl, icre_mpl>

 ID mplid R4 Variable-size memory pool ID

 T_CMPL *pk_cmpl R5 Pointer to the packet where the variable-size

memory pool creation information is stored

 <acre_mpl, iacre_mpl>

 T_CMPL *pk_cmpl R4 Pointer to the packet where the variable-size

memory pool creation information is stored

Return Parameters:
 <cre_mpl, icre_mpl>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_mpl, iacre_mpl>

 ER_ID mplid R4 Created variable-size memory pool ID (a positive

value) or error code

Packet Structure:
(1) CFG_NEWMPL is not checked

 typedef struct t_cmpl{

 ATR mplatr; +0 4 Variable-size memory pool attribute

 SIZE mplsz; +4 4 Size of memory pool (Number of bytes)

 VP mpl; +8 4 Start address of the variable-size

memory pool area

 }T_CMPL;

(2) CFG_NEWMPL is checked

 typedef struct t_cmpl{

 ATR mplatr; +0 4 Variable-size memory pool attribute

 SIZE mplsz; +4 4 Size of memory pool (Number of bytes)

 VP mpl; +8 4 Start address of the variable-size

memory pool area

 VP mplmb; +12 4 Start address of the variable-size

memory pool management table area

 UINT minblksz; +16 4 Minimum block size

 UINT sctnum; +20 4 Maximum sector number

 }T_CMPL;

Section3 Service Calls

Rev.6.00 187
REJ10B0060-0600

Error Codes:
 E_NOMEM [k] Insufficient memory (Memory pool area cannot be allocated in

the memory)

 E_RSATR [p] Invalid attribute (mplatr is invalid)

 E_PAR [p] Parameter error (pk_cmpl is other than a multiple of four,

mplsz is other than a multiple of four,

mplsz < TSZ_MPL(1,4), mplsz ≥ H'80000000, mpl is other than a

multiple of four if mpl is not NULL, or while VTA_UNFRAGMENT

is selected, minblksz = 0, sctnum = 0, mplsz < minblksz * 32,

or mplmb is other than a multiple of four)

 E_ID [p] Invalid ID number (mplid ≤ 0 or mplid > CFG_MAXMPLID)

 E_OBJ [k] Object status is invalid

(Variable-size memory pool indicated by mplid already exists)

 E_NOID [k] No ID available

Function:

Service calls cre_mpl and icre_mpl create a variable-size memory pool with an ID indicated by
mplid using the contents specified by pk_cmpl.

Service calls acre_mpl and iacre_mpl search for an unused variable-size memory pool ID and
create a variable-size memory pool that has this ID with the contents specified by parameter
pk_cmpl, then returns the ID. The range searched for the variable-size memory pool ID is 1 to
CFG_MAXMPLID.

(1) mplatr

Specify the logical OR of the following values for mplatr.

(a) Order of tasks in the queue for waiting for memory block acquisition

Only TA_TFIFO can be specified.

• TA_TFIFO (H'00000000): Task queue waiting for memory is managed on a FIFO basis.

(b) Management method

When CFG_NEWMPL is selected, VTA_UNFRAGMENT can be specified.

• VTA_UNFRAGMENT (H'80000000): Sector management (reducing fragmentation in free
space)

The VTA_UNFRAGMENT attribute is suitable for a memory pool from which a large number
of small memory blocks are to be acquired. When this attribute is specified, small blocks are
collectively allocated in specialized contiguous areas to leave larger possible contiguous areas.

Section3 Service Calls

Rev.6.00 188
REJ10B0060-0600

Only when attribute VTA_UNFRAGMENT is specified, mplmb, minblksz, and sctnum become
valid. When sctnum is set to a larger value than mplsz / (minblksz × 32), mplsz / (minblksz ×
32) is assumed.

For details, refer to section 2.15.2, Controlling Fragmentation of Free Space.

(2) mplsz

Parameter mplsz specifies the size of the variable-size memory pool to be created. Also refer to
section 2.15.3, Management of Variable-Size Memory Pool.

The following macro is provided to estimate the approximate size to be specified for mplsz.

 SIZE mplsz = TSZ_MPL(UINT blkcnt, UINT blksz)
Approximate size (bytes) of a variable-size memory pool area required to hold the
blkcnt number of blksz-byte memory blocks

This macro calculates the size assuming that the VTA_UNFRAGMENT is not selected. The
equation for calculating the size depends on whether CFG_NEWMPL is selected.

(3) mpl

Parameter mpl specifies the start address of a free area to be used as a variable-size memory
pool. The kernel allocates an mplsz-byte area starting from address mpl as a variable-size
memory pool.

When NULL is specified as mpl, the kernel allocates an mplsz-byte area from the variable-size
memory pool area (CFG_MPLSZ). After the memory pool has been created, the free variable-
size memory pool area will decrease by an amount given by the following expression:

 Decrease in size = mplsz + 16

(4) mplmb

mplmb is a member not defined in the μITRON4.0 specification.

Parameter mplmb is only valid when VTA_UNFRAGMENT is specified; it is ignored in other
cases.

Allocate an area for the size calculated by the following macro, and specify the start address of
the area as mplmb.

 VTSZ_MPLMB(maximum sector number)

Section3 Service Calls

Rev.6.00 189
REJ10B0060-0600

(5) minblksz and sctnum

These are parameters not defined in the μITRON4.0 specification.

These parameters are valid only when VTA_UNFRAGMENT is specified. For details, refer to
the above description of attribute VTA_UNFRAGMENT.

Variable-size memory pools can also be created statically by the configurator.

Supplement:

The standard alignment size for the address of a memory block is 4. To specify an address with
the cache line size (16 or 32), allocate the area as follows (N means the alignment size).

(1) When CFG_NEWMPL is selected and VTA_UNFRAGMENT is not specified

• Allocate a memory pool area to the N-byte boundary address, and specify that address when
creating a memory pool.

• Specify a multiple of N as the size of every memory block to be acquired.

(2) When CFG_NEWMPL is selected and VTA_UNFRAGMENT is specified

• Allocate a memory pool area to the N-byte boundary address, and specify that address when
creating a memory pool.

• Specify N for the minimum block size.

• Specify a multiple of N as the size of every memory block to be acquired.

(3) When CFG_NEWMPL is not selected

1. Alignement when N = 16

⎯ Allocate a memory pool area to the 16-byte boundary address, and specify that address
when creating a memory pool.

⎯ Specify a multiple of 16 as the size of every memory block to be acquired.
2. Alignment when N = 32

⎯ Allocate a memory pool area to the address obtained by (32-byte boundary address - 16)
by the application, and specify that address when creating a memory pool.

⎯ Specify (a multiple of N + 16) as the size of every memory block to be acquired.

Section3 Service Calls

Rev.6.00 190
REJ10B0060-0600

3.14.2 Delete Variable-Size Memory Pool (del_mpl)

C-Language API:
 ER ercd = del_mpl(ID mplid);

Parameters:
 ID mplid R4 Variable-size memory pool ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (mplid ≤ 0 or mplid > CFG_MAXMPLID)

 E_NOEXS [k] Undefined (Variable-size memory pool indicated by mplid does

not exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

Service call del_mpl deletes the variable-size memory pool indicated by mplid. No error will
occur even if there is a task waiting to acquire a memory block in the variable-size memory pool
area. However, in that case, the task in the WAITING state will be released and error code
E_DLT will be returned.

When the memory pool is allocated in the variable-size memory pool that is created with NULL
as mpl is deleted, the free variable-size memory pool area (CFG_MPLSZ) will increase by an
amount given by the following expression:

Increase in size = (mplsz specified at creation) + 16 bytes

The kernel will not perform any processing even when a block has already been acquired.

Section3 Service Calls

Rev.6.00 191
REJ10B0060-0600

3.14.3 Get Variable-Size Memory Block (get_mpl, pget_mpl, ipget_mpl, tget_mpl)

C-Language API:
 ER ercd = get_mpl (ID mplid, UINT blksz, VP *p_blk);

 ER ercd = pget_mpl (ID mplid, UINT blksz, VP *p_blk);

 ER ercd = ipget_mpl (ID mplid, UINT blksz, VP *p_blk);

 ER ercd = tget_mpl (ID mplid, UINT blksz, VP *p_blk);

Parameters:
 ID mplid R4 Variable-size memory pool ID

 UINT blksz R5 Memory block size (Number of bytes)

 VP *p_blk R6 Pointer to the area where the start address of

the memory block is to be returned

 <tget_mpl>

 TMO tmout R7 Timeout specification

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 VP *p_blk R6 Pointer to the area where the start address of

the memory block is stored

Error Codes:
 E_PAR [p] Parameter error (p_blk is other than a multiple of four,

blksz is other than a multiple of four or 0, or tmout ≤ –2)

 [k] (mplsz* – 16 < blksz)

 E_ID [p] Invalid ID number (mplid ≤ 0 or mplid > CFG_MAXMPLID)

 E_NOEXS [k] Undefined (Variable-size memory pool indicated by mplid does

not exist)

 E_CTX [k] Context error (Called from disabled system state)

 E_DLT [k] Waiting object deleted (The memory pool specified by mplid has

been deleted)

 E_TMOUT [k] Polling failed or timeout

 E_RLWAI [k] WAITING state was forcibly cancelled

(rel_wai service call was called in the WAITING state)

Note: mplsz: Memory pool size created at variable-size memory pool creation

Section3 Service Calls

Rev.6.00 192
REJ10B0060-0600

Function:

Each service call acquires a variable-size memory block with the size specified by blksz
(number of bytes) from the variable-size memory pool indicated by mplid, and returns the start
address of the acquired memory block to the area indicated by p_blk.

After the memory block has been acquired, the size of the variable-size memory pool free space
will decrease. For details, refer to section 2.15.3, Management of Variable-Size Memory Pool.

If there are tasks already waiting for the memory pool, or if no task is waiting but there is no
memory block available, the task having called service call get_mpl or tget_mpl is placed in the
memory block wait queue, and the task having called service call pget_mpl or ipget_mpl is
immediately terminated with the error code E_TMOUT returned. The queue is managed on a
first-in first-out (FIFO) basis.

Parameter tmout of service call tget_mpl specifies the timeout period. If a positive value is
specified for parameter tmout, error code E_TMOUT is returned when the timeout period has
passed without the wait release conditions being satisfied.

If tmout = TMO_POL (0) is specified, the same operation as for service call pget_mpl will be
performed.

If tmout = TMO_FEVR (–1) is specified, timeout watch is not performed. In other words, the
same operation as for service call get_mpl will be performed.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 193
REJ10B0060-0600

3.14.4 Release Variable-Size Memory Block (rel_mpl, irel_mpl)

C-Language API:
 ER ercd = rel_mpl(ID mplid, VP blk);

 ER ercd = irel_mpl(ID mplid, VP blk);

Parameters:
 ID mplid R4 Variable-size memory pool ID

 VP blk R5 Start address of memory block

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (blk is other than a multiple of four)

 [k] (blk is other than the memory block start address or blk

has already been returned)

 E_ID [p] Invalid ID number (mplid ≤ 0 or mplid > CFG_MAXMPLID)

 E_NOEXS [k] Undefined (Variable-size memory pool indicated by mplid

does not exist)

Function:

Each service call returns the memory block specified by blk to the variable-size memory pool
specified by mplid.

The start address of the memory block acquired by service call get_mpl, pget_mpl, ipget_mpl, or
tget_mpl must be specified as parameter blk.

After the memory block has been returned, the size of the variable-size memory pool free space
will increase. For details, refer to section 2.15.3, Management of Variable-Size Memory Pool.

When the target variable-size memory pool has a contiguous memory block requested by the
task at the head of the memory block acquisition wait queue, the memory block is assigned to
that task; as a result, the task is released from the WAITING state.

The same process will be done for the remaining tasks in the order of the wait queue if the
remaining memory pool size still has enough contiguous memory blocks available.

Section3 Service Calls

Rev.6.00 194
REJ10B0060-0600

3.14.5 Refer to Variable-Size Memory Pool State (ref_mpl, iref_mpl)

C-Language API:
 ER ercd = ref_mpl (ID mplid, T_RMPL *pk_rmpl);

 ER ercd = iref_mpl (ID mplid, T_RMPL *pk_rmpl);

Parameters:
 ID mplid R4 Variable-size memory pool ID

 T_RMPL *pk_rmpl R5 Pointer to the packet where the variable-

size memory pool state is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RMPL *pk_rmpl R5 Pointer to the packet where the variable-

size memory pool state is stored

Packet Structure:
 typedef struct t_rmpl{

 ID wtskid; +0 2 Wait task ID

 SIZE fmplsz; +4 4 Total size of available memory area

(Number of bytes)

 UINT fblksz; +8 4 Maximum memory area available (Number

of bytes)

 }T_RMPL;

Error Codes:
 E_PAR [p] Parameter error (pk_rmpl is other than a multiple of four)

 E_ID [p] Invalid ID number (mplid ≤ 0 or mplid > CFG_MAXMPLID)

 E_NOEXS [k] Undefined (Variable-size memory pool indicated by mplid does

not exist)

Function:

Each service call refers to the status of the variable-size memory pool indicated by mplid and
returns the wait task ID (wtskid), the current free memory area total size (fmplsz), and the
maximum free memory space size (fblksz) to the area indicated by pk_rmpl.

The free space is usually fragmented. The maximum contiguous free space is returned to
parameter fblksz. The block up to the size fblksz can be acquired immediately by calling service
call get_mpl, pget_mpl, ipget_mpl, or tget_mpl.

If there is no task waiting to get a memory block, TSK_NONE (0) is returned as a wait task ID.

Section3 Service Calls

Rev.6.00 195
REJ10B0060-0600

3.15 Time Management (System Clock)
System Clock Management Service Calls: System clock is controlled by the service calls
listed in table 3.46.

Table 3.46 Service Calls for System Clock Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

set_tim [S] T/E/D/U

iset_tim

Sets system clock

N/E/D/U

get_tim [S] T/E/D/U

iget_tim

Gets system clock

N/E/D/U

isig_tim [S] Supplies time tick Automatically executed
according to
CFG_TIMUSE check

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

System Clock Management Specifications: The system clock management specifications are
listed in table 3.47.

Table 3.47 System Clock Management Specifications

Item Description

System clock value Unsigned 48 bits

System clock unit 1 ms

System clock update cycle CFG_TICNUME/CFG_TICDENO [ms]*

System clock initial value (at initialization) H'000000000000

Note: The values of TIC_NUME and TIC_DENO defined in kernel_macro.h are same as the
values of CFG_TICNUME and CFG_TICDENO, respectively.

Section3 Service Calls

Rev.6.00 196
REJ10B0060-0600

The system clock is expressed as 48-bit unsigned integer value by using the data type
“SYSTIM”. The maximum value of the system clock is shown as follows.

 [Case of “CFG_TICNUME/CFG_TICDENO ≤ 1”]

 Maximum value = H'7fffffffffff/CFG_TICDENO

 [Case of “CFG_TICNUME/CFG_TICDENO > 1”]

 Maximum value = H'7fffffffffff

When the system clock exceeds the above maximum value at timer interrupt (isig_tim), the
system clock is initialized to 0.

If a value larger than the above maximum value is specified in the set_tim service call, the
system operation is not guaranteed.

Section3 Service Calls

Rev.6.00 197
REJ10B0060-0600

3.15.1 Set System Clock (set_tim, iset_tim)

C-Language API:
 ER ercd = set_tim (SYSTIM *p_systim);

 ER ercd = iset_tim (SYSTIM *p_systim);

Parameters:
 SYSTIM *p_systim R4 Pointer to the packet where the current time

data is indicated

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Packet Structure:
 typedef struct systim {

 UH utime; 0 2 Current time data (upper)

 UW ltime; +4 4 Current time data (lower)

 }SYSTIM;

Error Codes:
 E_PAR [p] Parameter error (p_systim is other than a multiple of four)

Function:

Each service call changes the current system clock retained in the system to a value specified by
p_systim.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for tmout is H'7fffffff/CFG_TICDENO. If a value
larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 198
REJ10B0060-0600

3.15.2 Get System Clock (get_tim, iget_tim)

C-Language API:
 ER ercd = get_tim (SYSTIM *p_systim);

 ER ercd = iget_tim (SYSTIM *p_systim);

Parameters:
 SYSTIM *p_systim R4 Start address of the packet where the current

time data is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 SYSTIM *p_systim R4 Start address of the packet where the current

time data is stored

Packet Structure:
 typedef struct systim {

 UH utime; 0 2 Current time data (upper)

 UW ltime; +4 4 Current time data (lower)

 }SYSTIM;

Error Codes:
 E_PAR [p] Parameter error (p_systim is other than a multiple of four)

Function:

Each service call reads the current system clock and returns it to the area indicated by p_systim.

Section3 Service Calls

Rev.6.00 199
REJ10B0060-0600

3.15.3 Supply Time Tick (isig_tim)

Function:

Updates the system clock.

When CFG_TIMUSE is selected, the system is configured such that service call isig_tim is
executed automatically in cycles equal to CFG_TICDENO/CFG_TICNUME [ms]. That is, this
function is not a service call, and so cannot be called from an application.

When a time tick is supplied, the kernel performs the following time-related processing.

(1) System clock update (+1)

(2) Startup of time event handler

(3) Timeout processing for tasks in a WAITING state due to service calls with a timeout, such
as tslp_tsk

In order to use kernel functions related to time, the timer driver must be included. For details,
refer to Appendix D, Timer Driver.

Section3 Service Calls

Rev.6.00 200
REJ10B0060-0600

3.16 Time Management (Cyclic Handler)
Cyclic Handler Service Calls: Cyclic handler is controlled by the service calls listed in table
3.48.

Table 3.48 Service Calls for Cyclic Handler

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_cyc [s] T/E/D/U

icre_cyc

Creates cyclic handler

N/E/D/U

acre_cyc T/E/D/U

iacre_cyc

Creates cyclic handler and assigns cyclic handler
ID automatically N/E/D/U

del_cyc Deletes cyclic handler T/E/D/U

sta_cyc [S] T/E/D/U

ista_cyc

Starts cyclic handler operation

N/E/D/U

stp_cyc [S] T/E/D/U

istp_cyc

Stops cyclic handler operation

N/E/D/U

ref_cyc T/E/D/U

iref_cyc

Refers to the cyclic handler state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Cyclic Handler Specifications: The cyclic handler specifications are listed in table 3.49.

Table 3.49 Cyclic Handler Specifications

Item Description

Cyclic handler ID 1 to CFG_MAXCYCID (14 max.)

Attribute supported TA_HLNG: The task is written in a high-level language
TA_ASM: The task is written in assembly language
TA_STA: Starts cyclic handler operation
TA_PHS: Reserves initiation phase

Section3 Service Calls

Rev.6.00 201
REJ10B0060-0600

3.16.1 Create Cyclic Handler

(cre_cyc, icre_cyc)

(acre_cyc, iacre_cyc: Assign Cyclic Handler ID Automatically)

C-Language API:
 ER ercd = cre_cyc (ID cycid, T_CCYC *pk_ccyc);

 ER ercd = icre_cyc (ID cycid, T_CCYC *pk_ccyc);

 ER_ID cycid = acre_cyc (T_CCYC *pk_ccyc);

 ER_ID cycid = iacre_cyc (T_CCYC *pk_ccyc);

Parameters:
 <cre_cyc, icre_cyc>

 ID cycid R4 Cyclic handler ID

 T_CCYC *pk_ccyc R5 Pointer to the packet where the cyclic

handler creation information is stored

 <acre_cyc, iacre_cyc>

 T_CCYC *pk_ccyc R4 Pointer to the packet where the cyclic

handler creation information is stored

Return Parameters:
 <cre_cyc, icre_cyc>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_cyc, iacre_cyc>

 HNO cycid R0 Created cyclic handler ID number (a

positive value) or error code

Packet Structure:
 typedef struct t_ccyc{

 ATR cycatr; 0 4 Cyclic handler attribute

 VP_INT exinf; +4 4 Extended information

 FP cychdr; +8 4 Cyclic handler address

 RELTIM cyctim; +12 4 Cyclic handler initiation cycle

 RELTIM cycphs; +16 4 Cyclic handler initiation phase

 }T_CCYC;

Error Codes:
 E_RSATR [p] Invalid attribute (cycatr is invalid)

 E_PAR [p] Parameter error (pk_ccyc is other than a multiple of four,

cyctim = 0, cycphs > cyctim, or cychdr is an odd address)

 E_ID [p] Invalid ID number (cycid ≤ 0 or cycid > CFG_MAXCYCID)

 E_OBJ [k] Object status is invalid

(Cyclic handler indicated by cycid already exists)

 E_NOID [k] No ID available

Section3 Service Calls

Rev.6.00 202
REJ10B0060-0600

Function:

Service calls cre_cyc and icre_cyc create the cyclic handler indicated by parameter cycid with
the contents specified by parameter pk_ccyc.

Service calls acre_cyc and iacre_cyc search for an unused cyclic handler ID and define a cyclic
handler that has the searched ID with the contents specified by parameter pk_ccyc, and return
the defined cyclic handler ID as a return parameter. The range for searching for an unused cyclic
handler specification number is 1 to CFG_MAXCYCID.

The cyclic handler is a time event handler for the non-task context initiated by the time interval.

Parameter cycatr is specified in the following format. See table 3.50 for details.

cycatr:= ((TA_HLNG || TA_ASM) | [TA_STA] | [TA_PHS])

Table 3.50 Cyclic Handler Attributes (cycatr)

cycatr Code Description

TA_HLNG H'00000000 The handler is written in a high-level language

TA_ASM H'00000001 The handler is written in assembly language

TA_STA H'00000002 Starts the cyclic handler operation

TA_PHS H'00000004 Reserves initiation phase

When TA_STA is specified, the cyclic handler is set to the operating state after it is created.
When TA_STA is not specified, the cyclic handler does not operate until service calls sta_cyc or
ista_cyc is called. When TA_PHS is specified, the initiation phase of the cyclic handler is kept
before activating the cyclic handler, and the next time to initiate the handler is determined.
When TA_PHS is not specified, the next time to initiate the cyclic handler is determined based
on the time that service calls sta_cyc or ista_cyc is called.

Parameter exinf specifies the extended information to be passed as a parameter when initiating
the cyclic handler. Parameter exinf can be widely used by the user, for example, to set
information concerning cyclic handlers to be defined.

Parameter cychdr specifies the start address of the cyclic handler.

Parameter cyctim specifies the handler initiation state.

Parameter cycphs specifies the handler initiation phase.

If a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick cycles),
the maximum value that can be specified for cyctim and cycphs is H'7fffffff/CFG_TICDENO. If
a value larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 203
REJ10B0060-0600

The first time to initiate the cyclic handler occurs after cycphs (initiation phase) has passed since
the service call that creates the cyclic handler has been called. The cyclic handler is then
initiated at every cyctim (initiation interval).

The cyclic handler can also be created statically by the configurator.

3.16.2 Delete Cyclic Handler (del_cyc)

C-Language API:
 ER ercd = del_cyc (ID cycid);

Parameters:
 ID cycid R4 Cyclic handler ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (cycid ≤ 0 or cycid > CFG_MAXCYCID)

 E_NOEXS [k] Undefined (Cyclic handler indicated by cycid does not

exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

Service call del_cyc deletes the cyclic handler indicated by parameter cycid.

Section3 Service Calls

Rev.6.00 204
REJ10B0060-0600

3.16.3 Start Cyclic Handler (sta_cyc, ista_cyc)

C-Language API:
 ER ercd = sta_cyc (ID cycid);

 ER ercd = ista_cyc (ID cycid);

Parameters:
 ID cycid R4 Cyclic handler ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (cycid ≤ 0 or cycid > CFG_MAXCYCID)

 E_NOEXS [k] Undefined (Cyclic handler specified by cycid does not

exist)

Function:

Each service call causes the cycle handler specified by cycid to enter the operation state.

If TA_PHS is not specified as a cyclic handler attribute, the cyclic handler is started each time
the start cycle has passed, based on the timing at which the service calls are called.

If the cyclic handler specified by cycid is in the operating state and TA_PHS is not specified as
its attribute, the next timing of initiation is set after the service call is called.

If the cyclic handler specified by cycid is in the operating state and TA_PHS is specified as its
attribute, the next timing of initiation is not set.

Section3 Service Calls

Rev.6.00 205
REJ10B0060-0600

3.16.4 Stop Cyclic Handler (stp_cyc, istp_cyc)

C-Language API:
 ER ercd = stp_cyc (ID cycid);

 ER ercd = istp_cyc (ID cycid);

Parameters:
 ID cycid R4 Cyclic handler ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (cycid ≤ 0 or cycid > CFG_MAXCYCID)

 E_NOEXS [k] Undefined (Cyclic handler specified by cycid does not

exist)

Function:

Each service call causes the cyclic handler indicated by parameter cycid to enter the not-
operating state.

Section3 Service Calls

Rev.6.00 206
REJ10B0060-0600

3.16.5 Refer to Cyclic Handler State (ref_cyc, iref_cyc)

C-Language API:
 ER ercd = ref_cyc (ID cycid, T_RCYC *pk_rcyc);

 ER ercd = iref_cyc (ID cycid, T_RCYC *pk_rcyc);

Parameters:
 ID cycid R4 Cyclic handler ID

 T_RCYC *pk_rcyc R5 Pointer to the packet where the cyclic

handler state is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RCYC *pk_rcyc R5 Pointer to the packet where the cyclic

handler state is stored

Packet Structure:
 typedef struct t_rcyc{

 STAT cycstat; +0 4 Cyclic handler operating state

 RELTIM lefttim ; +4 4 Remaining time until the cyclic

handler is initiated

 }T_RCYC;

Error Codes:
 E_PAR [p] Parameter error (pk_rcyc is other than a multiple of four)

 E_ID [p] Invalid ID number (cycid ≤ 0 or cycid > CFG_MAXCYCID)

 E_NOEXS [k] Undefined (Cyclic handler specified by cycid does not

exist)

Function:

Each service call reads the cyclic handler state indicated by cycid and returns the cyclic handler
operation state (cycstat) and the time remaining until the cyclic handler is initiated (lefttim), to
the area indicated by parameter pk_rcyc.

The target cyclic handler operation state is returned to parameter cycstat.

Table 3.51 Handler Initiation State (cycstat)

cycstat Code Description

TCYC_STP H'00000000 The cyclic handler is not in the operating state

TCYC_STA H'00000001 The cyclic handler is in the operating state

The relative time until the target cyclic handler is next initiated is returned to parameter lefttim.
When the target cyclic handler is not initiated, lefttim is undefined.

Section3 Service Calls

Rev.6.00 207
REJ10B0060-0600

3.17 Time Management (Alarm Handler)
Alarm Handler Service Calls: Alarm handler is controlled by the service calls listed in table
3.52.

Table 3.52 Service Calls for Alarm Handler

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

cre_alm T/E/D/U

icre_alm

Creates alarm handler

N/E/D/U

acre_alm T/E/D/U

iacre_alm

Creates alarm handler and assigns alarm handler
ID automatically N/E/D/U

del_alm Deletes alarm handler T/E/D/U

sta_alm T/E/D/U

ista_alm

Starts alarm handler operation

N/E/D/U

stp_alm T/E/D/U

istp_alm

Stops alarm handler operation

N/E/D/U

ref_alm T/E/D/U

iref_alm

Refers to the alarm handler state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Alarm Handler Specifications: The alarm handler specifications are listed in table 3.53.

Table 3.53 Alarm Handler Specifications

Item Description

Alarm handler ID 1 to CFG_MAXALMID (15 max)

Attribute supported TA_HLNG: The task is written in a high-level language
TA_ASM: The task is written in assembly language

Section3 Service Calls

Rev.6.00 208
REJ10B0060-0600

3.17.1 Create Alarm Handler

(cre_alm, icre_alm)

(acre_alm, iacre_alm: Assign Alarm Handler ID Automatically)

C-Language API:
 ER ercd = cre_alm (ID almid, T_CALM *pk_calm);

 ER ercd = icre_alm (ID almid, T_CALM *pk_calm);

 ER_ID almid = acre_alm (T_CALM *pk_calm);

 ER_ID almid = iacre_alm (T_CALM *pk_calm);

Parameters:
 <cre_alm, icre_alm>

 ID almid R4 Alarm handler ID

 T_CALM *pk_calm R5 Pointer to the packet where the alarm

handler creation information is stored

 <acre_alm, iacre_alm>

 T_CALM *pk_calm R4 Pointer to the packet where the alarm

handler creation information is stored

Return Parameters:
 <cre_alm, icre_alm>

 ER ercd R0 Normal end (E_OK) or error code

 <acre_alm, iacre_alm>

 ER_ID almid R0 Created alarm handler ID (a positive

value) or error code

Packet Structure:
 typedef struct t_calm {

 ATR almatr; 0 4 Alarm handler attribute

 VP_INT exinf; +4 4 Extended information

 FP almhdr; +8 4 Alarm handler address

 }T_CALM;

Error Codes:
 E_RSATR [p] Invalid attribute (almatr is invalid)

 E_PAR [p] Parameter error (pk_calm is other than a multiple of four or

 almhdr is an odd value)

 E_ID [p] Invalid ID number (almid ≤ 0 or almid > CFG_MAXALMID)

 E_OBJ [k] Object status is invalid

(Alarm handler indicated by almid already exists)

 E_NOID [k] No ID available

Section3 Service Calls

Rev.6.00 209
REJ10B0060-0600

Function:

Service calls cre_alm and icre_alm create the alarm handler indicated by parameter almid with
the contents specified by parameter pk_calm.

Service calls acre_alm and iacre_alm search for an unused alarm handler ID and define an alarm
handler that has the searched ID with the contents specified by parameter pk_calm, and return
the defined alarm handler ID as a return parameter. The range for searching for an unused alarm
handler ID is 1 to CFG_MAXALMID.

The alarm handler is a time event handler for the non-task context initiated at the specified time
only once.

Parameter almatr is specified in the following format. See table 3.54 for details.

almatr:= (TA_HLNG || TA_ASM)

Table 3.54 Alarm Handler Attributes (almatr)

almatr Code Description

TA_HLNG H'00000000 The handler is written in a high-level language

TA_ASM H'00000001 The handler is written in assembly language

Parameter exinf specifies extended information to be returned as a parameter when initiating the
alarm handler. Parameter exinf can be widely used by the user, for example, to set information
concerning alarm handlers to be defined.

Parameter almhdr specifies the start address of the alarm handler.

The time to initiate the alarm handler is not set immediately after creating the alarm handler. The
alarm handler is in the stop state.

The alarm handler can also be created statically by the configurator.

Section3 Service Calls

Rev.6.00 210
REJ10B0060-0600

3.17.2 Delete Alarm Handler (del_alm)

C-Language API:
 ER ercd = del_alm (ID almid);

Parameters:
 ID almid R4 Alarm handler ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (almid ≤ 0 or almid > CFG_MAXALMID)

 E_NOEXS [k] Undefined (Alarm handler specified by almid does not

exist)

 E_CTX [k] Context error (Called from disabled system state)

Function:

Service call del_alm deletes the alarm handler indicated by parameter almid.

Section3 Service Calls

Rev.6.00 211
REJ10B0060-0600

3.17.3 Start Alarm Handler (sta_alm, ista_alm)

C-Language API:
 ER ercd = sta_alm (ID almid, RELTIM almtim);

 ER ercd = ista_alm (ID almid, RELTIM almtim);

Parameters:
 ID almid R4 Alarm handler ID

 RELTIM almtim R5 Alarm handler initiation time

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (almid ≤ 0 or almid > CFG_MAXALMID)

 E_NOEXS [k] Undefined (Alarm handler specified by almid does not

exist)

Function:

The starting time for the alarm handler specified by almid is set to the relative time specified by
almtim after the moment at which the service call is called, to start operation of the alarm
handler.

If a time is set for an alarm handler already in operation, the previous starting time setting is
cancelled, and the new starting time is set.

If almtim is set to 0, the alarm handler is started at the next time tick.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick
cycles), the maximum value that can be specified for almtim is H'ffffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 212
REJ10B0060-0600

3.17.4 Stop Alarm Handler (stp_alm, istp_alm)

C-Language API:
 ER ercd = stp_alm (ID almid);

 ER ercd = istp_alm (ID almid);

Parameters:
 ID almid R4 Alarm handler ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (almid ≤ 0 or almid > CFG_MAXALMID)

 E_NOEXS [k] Undefined (Alarm handler specified by almid does not

exist)

Function:

Each service call releases the alarm handler initiation time indicated by parameter almid, and
stops alarm handler operation.

Section3 Service Calls

Rev.6.00 213
REJ10B0060-0600

3.17.5 Refer to Alarm Handler State (ref_alm, iref_alm)

C-Language API:
 ER ercd = ref_alm (ID almid, T_RALM *pk_ralm);

 ER ercd = iref_alm (ID almid, T_RALM *pk_ralm);

Parameters:
 ID almid R4 Alarm handler ID

 T_RALM *pk_ralm R5 Pointer to the packet where the alarm

handler state is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RALM *pk_ralm R5 Pointer to the packet where the alarm

handler state is stored

Packet Structure:
 typedef struct t_ralm{

 STAT almstat; +0 4 Alarm handler operation state

 RELTIM lefttim; +4 4 Remaining time until the alarm

handler is initiated

 }T_RALM;

Error Codes:
 E_PAR [p] Parameter error (pk_ralm is other than a multiple of four)

 E_ID [p] Invalid ID number (almid ≤ 0 or almid > CFG_MAXALMID)

 E_NOEXS [k] Undefined (Alarm handler specified by almid does not

exist)

Function:

Each service call reads the alarm handler state indicated by almid and returns the alarm handler
operating state (almstat) and remaining time until the alarm handler is initiated (lefttim) to the
area indicated by parameter pk_ralm.

The target alarm handler activation state is returned to parameter almstat.

Table 3.55 Alarm Handler State (almstat)

almstat Code Description

TALM_STP H'00000000 The alarm handler is not operating

TALM_STA H'00000001 The alarm handler is operating

Relative time until the target alarm handler is initiated next is returned to parameter lefttim.
When the target alarm handler is not initiated, lefttim is undefined.

Section3 Service Calls

Rev.6.00 214
REJ10B0060-0600

3.18 Time Management (Overrun Handler)
Overrun Handler Service Calls: Overrun handler is controlled by the service calls listed in
table 3.56.

Table 3.56 Service Calls for Overrun Handler

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_ovr Defines overrun handler T/E/D/U

sta_ovr T/E/D/U

ista_ovr

Starts overrun handler operation

N/E/D/U

stp_ovr T/E/D/U

istp_ovr

Stops overrun handler operation

N/E/D/U

ref_ovr T/E/D/U

iref_ovr

Refers to overrun handler state

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Only one overrun handler can be defined in the system. The overrun handler is a time event
handler.

The processor time used by the task includes the execution times of a task, the service calls
called by the task, and the interrupt handler that is initiated during execution of the task. Used
processor time is not counted while the task is not in the RUNNING state.

Overrun Handler Specifications: The overrun handler specifications are listed in table 3.57.

Table 3.57 Overrun Handler Specifications

Item Description

Processor time unit (OVRTIM) Same as system clock (1 [ms])

Attribute supported TA_HLNG: The task is written in a high-level language
TA_ASM: The task is written in assembly language

Section3 Service Calls

Rev.6.00 215
REJ10B0060-0600

3.18.1 Define Overrun Handler (def_ovr)

C-Language API:
 ER ercd = def_ovr (T_DOVR *pk_dovr);

Parameters:
 T_DOVR *pk_dovr R4 Pointer to the packet where the overrun

handler definition information is stored

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Packet Structure:
 typedef struct t_dovr {

 ATR ovratr; 0 4 Overrun handler attribute

 FP ovrhdr; +4 4 Overrun handler address

 }T_DOVR;

Error Codes:
 E_RSATR [p] Invalid attribute (ovratr is invalid)

 E_PAR [p] Parameter error (pk_dovr is other than a multiple of four

or ovrhdr is an odd value)

Function:

The overrun handler is defined using the content specified by pk_dovr.

The overrun handler is a time event handler for non-task contexts which is started when the
processor is used by a task for a time exceeding a preset time.

Parameter ovratr is specified in the following format. See table 3.58 for details.

 ovratr := (TA_HLNG || TA_ASM)

Table 3.58 Overrun Handler Attributes (ovratr)

ovratr Code Description

TA_HLNG H'00000000 The handler is written in a high-level language

TA_ASM H'00000001 The handler is written in assembly language

As ovrhdr, the start address of the overrun handler is specified.

When, in service call def_ovr, pk_dovr = NULL(0) is specified, the overrun handler definition is
cancelled.

When an overrun handler has already been defined, if this service call is called, the preceding
definition is cancelled and the new definition takes its place.

An overrun handler can also be defined statically by the configurator.

Section3 Service Calls

Rev.6.00 216
REJ10B0060-0600

3.18.2 Start Overrun Handler (sta_ovr, ista_ovr)

C-Language API:
 ER ercd = sta_ovr (ID tskid, OVRTIM ovrtim);

 ER ercd = ista_ovr (ID tskid, OVRTIM ovrtim);

Parameters:
 ID tskid R4 Task ID

 OVRTIM ovrtim R5 Upper processor time limit

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task specified by tskid does not exist)

 E_OBJ [k] Object status is invalid

(Overrun handler has not been defined)

Function:

Overrun handler operation begins for the task specified by tskid.

By specifying tskid = TSK_SELF(0), the current task can be specified.

The upper processor time limit for the task is set to the time specified by ovrtim, and the
processor time used is cleared to 0. If upper processor time has been already specified for the
task indicated by tskid, the upper processor time limit previously specified is cancelled, and the
new processor time limit is set.

When the processor time used exceeds the upper processor time limit, the overrun handler is
started.

When a value larger than 1 is specified for CFG_TICDENO (the denominator for time tick
cycles), the maximum value that can be specified for ovrtim is H'ffffffff/CFG_TICDENO. If a
value larger than this is specified, operation is not guaranteed.

If 0 is specified for ovrtim, the overrun handler is started on the first time tick after the task
begins to use the processor.

For detail of time watch method, refer to section 2.16.4(2), Time Watch Method.

Section3 Service Calls

Rev.6.00 217
REJ10B0060-0600

3.18.3 Stop Overrun Handler Operation (stp_ovr, istp_ovr)

C-Language API:
 ER ercd = stp_ovr (ID tskid);

 ER ercd = istp_ovr (ID tskid);

Parameters:
 ID tskid R4 Task ID

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_ID [p] Invalid ID number (tskid < 0, tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task specified by tskid does not exist)

 E_OBJ [k] Object status is invalid

(Overrun handler has not been defined)

Function:

Each service call releases the upper processor time limit for the task indicated by parameter tskid
and stops overrun handler operation.

By specifying tskid = TSK_SELF (0), the current task can be specified.

Section3 Service Calls

Rev.6.00 218
REJ10B0060-0600

3.18.4 Refer to Overrun Handler State (ref_ovr, iref_ovr)

C-Language API:
 ER ercd = ref_ovr (ID tskid, T_ROVR *pk_rovr);

 ER ercd = iref_ovr (ID tskid, T_ROVR *pk_rovr);

Parameters:
 ID tskid R4 Task ID

 T_ROVR *pk_rovr R5 Pointer to the packet where the overrun

handler state is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_ROVR *pk_rovr R5 Pointer to the packet where the overrun

handler state is stored

Packet Structure:
 typedef struct t_rovr {

 STAT ovrstat; +0 4 Overrun handler operation state

 OVRTIM leftotm; +4 4 Remaining processor time

 }T_ROVR;

Error Codes:
 E_PAR [p] Parameter error (pk_rovr is other than a multiple of four)

 E_ID [p] Invalid ID number (tskid < 0 , tskid > CFG_MAXTSKID, or

tskid = TSK_SELF(0) is specified in a non-task context)

 E_NOEXS [k] Undefined (Task specified by tskid does not exist)

 E_OBJ [k] Object status is invalid

(Overrun handler has not been defined)

Function:

The state of the overrun handler for the task specified by tskid is referenced, and the state of
operation of the overrun handler (ovrstat) and the remaining processor time (leftotm) are
returned to the area specified by pk_rovr.

By specifying tskid = TSK_SELF (0), the current task can be specified.

As the operating state of the overrun handler, the upper processor time limit setting is returned
as ovrstat.

Table 3.59 Handler Activation State (ovrstat)

ovrstat Code Description

TOVR_STP H'00000000 No upper processor time limit is set

TOVR_STA H'00000001 An upper processor time limit is set

Section3 Service Calls

Rev.6.00 219
REJ10B0060-0600

The processor time remaining until the overrun handler is started due to the target task is
returned as leftotm. If no upper processor time limit is set for the task, the value of leftotm is
undefined.

3.19 System State Management
System State Management Service Calls: System state is controlled by the service calls listed
in table 3.60.

Table 3.60 Service Calls for System State Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

rot_rdq [S] T/E/D/U

irot_rdq [S]

Rotates ready queue

N/E/D/U

get_tid [S] T/E/D/U/C

iget_tid [S]

Refers to task ID in RUNNING state

N/E/D/U/C

loc_cpu [S] T/E/D/U/L

iloc_cpu [S]

Locks CPU

N/E/D/U/L

unl_cpu [S] T/E/D/U/L

iunl_cpu [S]

Unlocks CPU

N/E/D/U/L

dis_dsp [S] Disables task dispatch T/E/D/U

ena_dsp [S] Enables task dispatch T/E/D/U

sns_ctx [S] Refers to task context T/N/E/D/U/L/C

sns_loc [S] Refers to CPU-locked state T/N/E/D/U/L/C

sns_dsp [S] Refers to dispatch-disabled state T/N/E/D/U/L/C

sns_dpn [S] Refers to dispatch-pended state T/N/E/D/U/L/C

vsta_knl [s] Starts kernel T/N/E/D/U/L/C

ivsta_knl [s] T/N/E/D/U/L/C

vsys_dwn [s] Terminates the system T/N/E/D/U/L/C

ivsys_dwn [s] T/N/E/D/U/L/C

vget_trc T/E/D/U

ivget_trc

Acquires trace

N/E/D/U

ivbgn_int Acquires start of interrupt handler to trace N/E/D/U

ivend_int Acquires end of interrupt handler to trace N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

Section3 Service Calls

Rev.6.00 220
REJ10B0060-0600

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

3.19.1 Rotate Ready Queue (rot_rdq, irot_rdq)

C-Language API:
 ER ercd = rot_rdq(PRI tskpri);

 ER ercd = irot_rdq(PRI tskpri);

Parameters:
 PRI tskpri R4 Task priority

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (tskpri < 0, tskpri > CFG_MAXTSKPRI, or

tskpri = TPRI_SELF(0) is specified in a non-task context)

Function:

Each service call rotates the ready queue of the task priority indicated by parameter tskpri. In
other words, the task at the head of the task priority ready queue is sent to the end of the queue,
enabling the second task in the ready queue to be executed.

Specifying tskpri = TPRI_SELF (0) rotates the ready queue with the base priority of the current
task. The base priority is the same as the current priority when the mutex function is not used;
however, the current priority is not the same as the base priority while the mutex is locked. Thus,
the ready queue with current priority, including the current task, cannot be rotated even when
TPRI_SELF is specified.

Section3 Service Calls

Rev.6.00 221
REJ10B0060-0600

3.19.2 Get Task ID in RUNNING State (get_tid, iget_tid)

C-Language API:
 ER ercd = get_tid(ID *p_tskid);

 ER ercd = iget_tid(ID *p_tskid);

Parameters:
 ID *p_tskid R4 Pointer to the area where the task ID is

to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 ID *p_tskid R4 Pointer to the task ID

Error Codes:
 E_PAR [p] Parameter error (p_tskid is an odd value)

Function:

Each service call gets the task ID in the RUNNING state and returns it to the area indicated by
p_tskid. If each service call is called from task context, the current task ID is returned. If each
service call is called from non-task context, the task ID that is being executed is returned. If
there is no task in the RUNNING state, TSK_NONE (0) is returned.

Service calls get_tid and iget_tid can also be called from the CPU exception handler.

Section3 Service Calls

Rev.6.00 222
REJ10B0060-0600

3.19.3 Lock CPU (loc_cpu, iloc_cpu)

C-Language API:
 ER ercd = loc_cpu(void);

 ER ercd = iloc_cpu(void);

Parameters:
 None

Return Parameters:
 ER ercd R0 Normal end (E_OK)

Error Codes:
 None

Function:

Each service call locks the CPU and inhibits interrupts and task dispatches.

The following describes the CPU-locked state:

• Tasks cannot be scheduled while the CPU is locked.

• Interrupts, having a level equal to or below the kernel interrupt mask level
(CFG_KNLMSKLVL) defined by the configurator, are inhibited.

• Only the following service calls can be called from the CPU-locked state. The system
operation cannot be guaranteed when a service call other than the following is called:

⎯ ext_tsk
⎯ exd_tsk
⎯ sns_tex
⎯ loc_cpu, iloc_cpu
⎯ unl_cpu, iunl_cpu
⎯ sns_ctx
⎯ sns_loc
⎯ sns_dsp
⎯ sns_dpn
⎯ vsta_knl, ivsta_knl
⎯ vsys_dwn, ivsys_dwn

When the following service calls are called in the CPU locked state, the system returns to the
CPU unlocked state.

⎯ unl_cpu or iunl_cpu
⎯ ext_tsk or exd_tsk

Section3 Service Calls

Rev.6.00 223
REJ10B0060-0600

The transition between CPU-Locked state and CPU-unlocked state is occurred only when
loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, ext_tsk, or exd_tsk service call is called. An interrupt
handler which level is equal or lower than the kernel interrupt mask level
(CFG_KNLMSKLVL), time event handler, initialization routine, and task exception routine
must unlock the CPU at termination. If the CPU is locked at termination, normal system
operation cannot be guaranteed. Note, the CPU at the start of these handlers is unlocked. If the
CPU exception handler changes CPU-locked/unlocked state, the handler must return to former
state. If the handler does not return to former state, normal system operation cannot be
guaranteed.

If service calls loc_cpu and iloc_cpu are called while the CPU is locked, no error will occur. In
this case, queuing will not be done.

Section3 Service Calls

Rev.6.00 224
REJ10B0060-0600

3.19.4 Unlock CPU (unl_cpu, iunl_cpu)

C-Language API:
 ER ercd = unl_cpu(void);

 ER ercd = iunl_cpu(void);

Parameters:
 None

Return Parameters:
 ER ercd R0 Normal end (E_OK)

Error Codes:
 None

Function:

Each service call unlocks the CPU, which was locked by service call loc_cpu or iloc_cpu. If the
CPU enters the task-context dispatch-enabled state by the service call, the task scheduling is
performed.

When the system makes a transition to the CPU-locked state by calling service call iloc_cpu in
the interrupt handler, service call iunl_cpu must be called to unlock the CPU before returning
from the interrupt handler.

The CPU-locked state and dispatch-disabled state are managed individually. Thus, service call
unl_cpu or iunl_cpu does not enable the task dispatch by calling service call ena_dsp.

If service calls unl_cpu and iunl_cpu are called in CPU-unlocked state, no error will occur, but
queuing will not be done.

Section3 Service Calls

Rev.6.00 225
REJ10B0060-0600

3.19.5 Disable Dispatch (dis_dsp)

C-Language API:
 ER ercd = dis_dsp(void);

Parameters:
 None

Return Parameters:
 ER ercd R0 Normal end (E_OK)

Error Codes:
 None

Function:

Service call dis_dsp disables task dispatch.

The following describes the dispatch-disabled state:

• Task scheduling is delayed, so that a task other than the current task cannot enter the
RUNNING state.

• Interrupts can be accepted.

• Service calls to shift a task to the WAITING state cannot be called.

When the following service calls are called while task dispatch is disabled, the system returns to
the task dispatch-enabled state.

• ena_dsp

• ext_tsk or exd_tsk

The transition between dispatch-disabled state and dispatch-enabled state is occurred only when
dis_dsp, ena_dsp, ext_tsk, or exd_tsk service call is called.

If the CPU exception handler changes dispatch-disabled/enabled state, the handler must return to
former state. If the handler does not return to former state, normal system operation cannot be
guaranteed.

When task dispatch is disabled, the task state is undefined. Therefore, if the current task refers to
its state by calling service call ref_tsk, the returned state is not always the RUNNING state.

An error will not occur when service call dis_dsp is called while the task dispatch is disabled;
however, queuing will not be done.

Section3 Service Calls

Rev.6.00 226
REJ10B0060-0600

3.19.6 Enable Dispatch (ena_dsp)

C-Language API:
 ER ercd = ena_dsp(void);

Parameters:
 None

Return Parameters:
 ER ercd R0 Normal end (E_OK)

Error Codes:
 None

Function:

Service call ena_dsp enables task dispatch disabled by service call dis_dsp. Task scheduling is
then performed after the service call.

An error will not occur when service call ena_dsp is called during task dispatch-enabled state;
however, queuing will not be done.

Section3 Service Calls

Rev.6.00 227
REJ10B0060-0600

3.19.7 Refer to Context (sns_ctx)

C-Language API:
 BOOL state = sns_ctx(void);

Parameters:
 None

Return Parameters:
 BOOL state R0 Context

Function:

TRUE is returned when service call sns_ctx is called from non-task context. FALSE is returned
when service call sns_ctx is called from task context.

Service call sns_ctx can be called in the CPU-locked state and from the CPU exception handler.

Section3 Service Calls

Rev.6.00 228
REJ10B0060-0600

3.19.8 Refer to CPU-Locked State (sns_loc)

C-Language API:
 BOOL state = sns_loc(void);

Parameters:
 None

Return Parameters:
 BOOL state R0 CPU-locked state

Function:

Service call sns_loc returns TRUE when the CPU is locked. Service call sns_loc returns FALSE
when the CPU is unlocked.

Service call sns_loc can be called in the CPU-locked state and from the CPU exception handler.

Section3 Service Calls

Rev.6.00 229
REJ10B0060-0600

3.19.9 Refer to Dispatch-disabled State (sns_dsp)

C-Language API:
 BOOL state = sns_dsp(void);

Parameters:
 None

Return Parameters:
 BOOL state R0 Dispatch-disabled state

Function:

Service call sns_dsp returns TRUE when task dispatch is disabled. Service call sns_dsp returns
FALSE when task dispatch is enabled.

Service call sns_dsp can be called in the CPU-locked state and from the CPU exception handler.

Section3 Service Calls

Rev.6.00 230
REJ10B0060-0600

3.19.10 Refer to Dispatch-Pended State (sns_dpn)

C-Language API:
 BOOL state = sns_dpn(void);

Parameters:
 None

Return Parameters:
 BOOL state R0 Dispatch-pended state

Function:

Service call sns_dpn returns TRUE when the task dispatch is pended. Otherwise, service call
sns_dpn returns FALSE.

When the following conditions are satisfied, FALSE is returned. Otherwise, TRUE is returned.

• Task dispatch is not disabled.

• The CPU is unlocked.

• Task or task exception processing routine

• An interrupt is not masked by service call chg_ims.

Service call sns_dpn can be called in the CPU-locked state and from the CPU exception handler.

Section3 Service Calls

Rev.6.00 231
REJ10B0060-0600

3.19.11 Start Kernel (vsta_knl, ivsta_knl)

C-Language API:
 void vsta_knl(void);

 void ivsta_knl(void);

Assembler API:

 Branches to symbol “__kernel_reset”

Parameters:
 None

Return Parameters:
 Service call vsta_knl does not return any parameters to the current task.

Function:

Service call vsta_knl starts the kernel.

If the kernel has already been started, the multitasking environment up to that point is all
nullified.

This service call can also be called in the CPU-locked state and from the CPU exception
handler. It can also be called before the kernel is started.

This service call should be called in a state with all interrupts masked (SR.IMASK = 15).

In the HI7700/4 and HI7750/4, this service call can also be called from an exception block state
(SR.BL = 1).

An application calling this service call must be linked with the kernel. Refer to 2.18.1, Resetting
the CPU and Initiating the Kernel.

This service call is a function original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 232
REJ10B0060-0600

3.19.12 System Down (vsys_dwn, ivsys_dwn)

C-Language API:
 void vsys_dwn (W type, ER ercd, VW inf1, VW inf2);

 void ivsys_dwn (W type, ER ercd, VW inf1, VW inf2);

Parameters:
 W type R4 Error type

 ER ercd R5 Error code

 VW inf1 R6 System abnormal information 1

 VW inf2 R7 System abnormal information 2

Return Parameters:
 Service call vsys_dwn is not returned.

Function:

Service call vsys_dwn passes control to the system down routine.

A value (1 to H'7fffffff) corresponding to the error type must be specified for the parameter type.
Values below 0 are reserved for future expansion.

The system down routine is also executed when abnormal operation is detected in the kernel.

Service call vsys_dwn can be called in the CPU-locked state and from the CPU exception
handler.

This service call can be called even in the exception block state (SR.BL = 1) in the HI7700/4
and HI7750/4.

This service call is a function original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 233
REJ10B0060-0600

3.19.13 Acquire Trace Information (vget_trc, ivget_trc)

C-Language API:
 ER ercd = vget_trc(VW para1, VW para2, VW para3, VW para4);

 ER ercd = ivget_trc(VW para1, VW para2, VW para3, VW para4);

Parameters:
 VW para1 R4 Parameter 1

 VW para2 R5 Parameter 2

 VW para3 R6 Parameter 3

 VW para4 R7 Parameter 4

Return Parameters:
 ER ercd R0 Normal end (E_OK)

Error Codes:
 None

Function:

A trace of information required by the user is obtained.

The parameters para1 to para4 can be used freely by the user to distinguish the information to be
acquired.

The acquired trace information can be shown by using a debugging extension (DX).

If CFG_TRACE is not checked by the configurator, this service call does not perform any
processing.

This service call is a function original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 234
REJ10B0060-0600

3.19.14 Acquire Start of Interrupt Handler as Trace Information (ivbgn_int)

C-Language API:
 ER ercd = ivbgn_int(UINT dintno);

Parameters:
 UINT dintno R4 Interrupt handler number

Return Parameters:
 ER ercd R0 Normal end (E_OK)

Error Codes:
 None

Function:

The beginning of processing of the interrupt handler for the interrupt handler number specified
by dintno is traced.

The interrupt handler number is, for the HI7000/4, the CPU vector number, and for the HI7700/4
and HI7750/4 is the CPU exception code (in the case of a CPU for which INTEVT2 exists, the
INTEVT2 code; otherwise, the INTEVT code).

This service call should be called at the beginning of an interrupt handler. In addition, it should
always be used in combination with ivend_int.

An error does not result if it is called from code other than an interrupt handler, but in such cases
there is the possibility that the debugging extension trace display may be illegal.

If CFG_TRACE is not checked by the configurator, this service call does not perform any
processing.

This service call is a function original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 235
REJ10B0060-0600

3.19.15 Acquire End of Interrupt Handler as Trace Information (ivend_int)

C-Language API:
 ER ercd = ivend_int(UINT dintno);

Parameters:
 UINT dintno R4 Interrupt handler number

Return Parameters:
 ER ercd R0 Normal end (E_OK)

Error Codes:
 None

Function:

The end of processing of the interrupt handler for the interrupt handler number specified by
dintno is traced.

The interrupt handler number is, for the HI7000/4, the CPU vector number, and for the HI7700/4
and HI7750/4 is the CPU exception code (in the case of a CPU for which INTEVT2 exists, the
INTEVT2 code; otherwise, the INTEVT code).

This service call should be called at the end of an interrupt handler. In addition, it should always
be used in combination with ivbgn_int.

An error does not result if it is called from code other than an interrupt handler, but in such cases
there is the possibility that the debugging extension trace display may be illegal.

If CFG_TRACE is not checked by the configurator, this service call does not perform any
processing.

This service call is a function original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 236
REJ10B0060-0600

3.20 Interrupt Management
Interrupt Management Service Calls: Interrupts are controlled by the service calls listed in
table 3.61.

Table 3.61 Service Calls for Interrupt Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_inh T/E/D/U

idef_inh

Defines interrupt handler

N/E/D/U

chg_ims T/E/D/U

ichg_ims

Changes interrupt mask

N/E/D/U

get_ims T/E/D/U

iget_ims

Refers to interrupt mask

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Interrupt Management Specifications: The interrupt management specifications are listed in
table 3.62.

Table 3.62 Interrupt Management Specifications

Item Description

Interrupt handler number 0 to CFG_MAXVCTNO (511 max.) (HI7000/4)
0 to CFG_MAXVCTNO (H'fe0 max.) (HI7700/4, HI7750/4)

Attribute supported TA_HLNG: The task is written in a high-level language
TA_ASM: The task is written in assembly language

Section3 Service Calls

Rev.6.00 237
REJ10B0060-0600

3.20.1 Define Interrupt Handler (def_inh, idef_inh)

C-Language API:
 ER ercd = def_inh(INHNO inhno, T_DINH *pk_dinh);

 ER ercd = idef_inh(INHNO inhno, T_DINH *pk_dinh);

Parameters:
 INHNO inhno R4 Interrupt handler number

 T_DINH *pk_dinh R5 Pointer to the packet where the definition

information of interrupt handler is stored

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Packet Structure:
 typedef struct t_dinh

 ATR inhatr; 0 4 Handler attribute

 FP inhhdr; +4 4 Handler address

 UINT inhsr; +8 4 SR at initiation (ignored in the

HI7000/4)

 }T_DINH;

Error Codes:
 E_RSATR [p] Invalid attribute (inhatr is invalid)

 E_PAR [p] Parameter error (pk_dinh is other than a multiple of four or

inthdr is an odd value)

 HI7000/4:

Invalid number specification

(inhno = 25 or 26, or inhno > CFG_MAXVCTNO)

 HI7700/4, HI7750/4:

Invalid number specification (inhno has a value other than a

multiple of H'20, inhno = H'160, or inhno > CFG_MAXVCTNO)

Function:

The handler for the interrupt handler number specified by inhno is defined as the content
specified by pk_dinh.

The interrupt handler number is, for the HI7000/4, the CPU vector number, and for the HI7700/4
and HI7750/4 is the CPU exception code (in the case of a CPU for which INTEVT2 exists, the
INTEVT2 code; otherwise, the INTEVT code).

On the HI7000/4, this call cannot be used to define handlers for the interrupt handler numbers 0
to 3 (power-on reset, manual reset). (If these numbers are specified, the call is ignored.)

On the HI7700/4 and HI7750/4, this call cannot be used to define handlers for the interrupt
handler numbers 0 and H'20 (power-on, manual reset). (If these numbers are specified, the call is
ignored.)

b1500043
テキストボックス
Correction: Please read inthdr for inhhdr.

Section3 Service Calls

Rev.6.00 238
REJ10B0060-0600

The parameter inhatr is specified in the following format. See table 3.63 for details.

 inhatr := (TA_HLNG || TA_ASM)

Table 3.63 Interrupt Handler Attributes (inhatr)

inhatr Code Description

TA_HLNG H'00000000 The handler is written in a high-level language

TA_ASM H'00000001 The handler is written in assembly language

VTA_DIRECT H'80000000 Direct interrupt handler (HI7000/4 only)

VTA_REGBANK H'40000000 Normal interrupt handler making use of the register
banks (HI7000/4 only)

In the case of the HI7000/4, VTA_DIRECT can be specified to indicate that the handler is to be
a direct interrupt handler. If you intend to define an interrupt handler with an interrupt level
higher than the kernel interrupt mask level (CFG_KNLMSKLVL), VTA_DIRECT must be
specified. However, the VTA_DIRECT attribute cannot be specified for CPU exceptions or trap
interrupt handler numbers. When CFG_DIRECT is selected for the configurator, it is not
possible to define handlers without the VTA_DIRECT attribute. If this is attempted, the
HI7000/4 returns the error E_RSATR.

VTA_REGBANK is valid with the HI7000/4. Furthermore, the selected CPU core must be the
SH-2A or SH2A-FPU and [SELECT] must have been selected for CFG_REGBANK on the
[Interrupt/CPU Exception Handler] page in the configurator. When all of these conditions hold,
specify VTA_REGBANK when defining normal interrupt handlers for interrupts with which the
register banks are to be used. In other cases, the specification of VTA_REGBANK has no
meaning. If VTA_DIRECT has already been specified, the specification of VTA_REGBANK is
superfluous and is simply ignored.

Be sure to specify VTA_REGBANK whenever you define a normal interrupt handler for an
interrupt with priority level xx for which the corresponding CFG_BANKLVLxx (xx is a value
from 01 to 15, which indicates an interrupt level) checkbox is marked. When you define a
normal interrupt handler for an interrupt with priority level xx for which CFG_BANKLVLxx
has not been marked, do not specify VTA_REGBANK.

Specification of VTA_REGBANK only has meaning when the interrupt handler number is 14,
64, or a higher number. This is simply the range of interrupt handler numbers for which register
banks can be used, and does not apply to the NMI or UBC interrupts. The specification of
VTA_REGBANK for an interrupt handler number outside this range has no meaning and is
simply ignored.

Section3 Service Calls

Rev.6.00 239
REJ10B0060-0600

If the selected CPU core is not the SH-2Aor SH2A-FPU or you have selected an option other
than [SELECT] for CFG_REGBANK in the configurator, handling by the HI7000/4 is as
follows.

• When the CPU core is the SH-2A or SH2A-FPU and [ALL] is selected for
CFG_REGBANK:

Register banks are used for interrupts with interrupt handler numbers 14, 64, and higher
numbers. Register banks are not used with other interrupts (i.e., the NMI and UBC
interrupts).

• When the CPU core is not the SH-2A or SH2A-FPU, or [NOTUSE] or [NOBANK]is
selected for CFG_REGBANK:

The register banks are not used with any interrupt.

On the HI7700/4 and HI7750/4, inhsr sets the value of the status register (SR) on startup of the
interrupt handler inhsr is specified using the same bit position as the SR configuration. A value
equal to or greater than the interrupt level should always be specified as the interrupt mask bit. If
a value lower than the interrupt level is specified, system operation may be abnormal. For
information of SR register, see section 4.2.1, SR Register and section 4.2.2, Cache Lock
Function (SH-3, SH3-DSP).

On actual interrupt handler start, SR is as follows.

• Interrupt mask bit

As specified by inhsr.

• Bits other than the interrupt mask bit

As specified by inhsr

In the HI7000/4, inhsr has no meaning, and is simply ignored. The actual value of SR on startup
is determined by the CPU interrupt processing.

When pk_dinh = NULL (0) is specified, the definition of inhno is cancelled.

inhsr is a member not defined in the μITRON4.0 specification.

Section3 Service Calls

Rev.6.00 240
REJ10B0060-0600

3.20.2 Change Interrupt Mask (chg_ims, ichg_ims)

C-Language API:
 ER ercd = chg_ims(IMASK imask);

 ER ercd = ichg_ims(IMASK imask);

Parameters:
 IMASK imask R4 Interrupt mask value

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (A value other than SR_IMS00 to SR_IMS15

was specified for imask)

Function:

Each service call changes the current interrupt mask to the level specified by imask.

The imask can be specified as follows:

• SR_IMSnn (H'0000000m) Changes interrupt mask level to nn.

nn: Character string indicating two-digit decimal number from 0 to 15 (00, 01, 02, ... , 15).

m: nn converted to hexadecimal number.

Use the service calls when changing the interrupt mask level in the following cases. The SR can
be directly changed when changing the interrupt mask level in cases other than below.

1. When the interrupt mask level is changed from level 0 to a level other than 0 in a task
context.

2. When the interrupt mask level is returned to 0 after the above case.

Otherwise, normal system operation cannot be guaranteed.

Note that service calls must not be called while the interrupt mask level is made higher than the
kernel interrupt mask level (CFG_KNLMSKLVL) unless this service call is used to lower the
interrupt mask level to a level equal to or below the kernel interrupt mask level. Otherwise,
normal system operation cannot be guaranteed.

If an interrupt is masked from the task context, the task is regarded as the non-task context until
the interrupt mask level is returned to 0.

For information of SR register, see section 4.2.1, SR Register.

Section3 Service Calls

Rev.6.00 241
REJ10B0060-0600

3.20.3 Refer to Interrupt Mask (get_ims, iget_ims)

C-Language API:
 ER ercd = get_ims(IMASK *p_imask);

 ER ercd = iget_ims(IMASK *p_imask);

Parameters:
 IMASK *p_imask R4 Start address of the area where the

interrupt mask level is to be

returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 IMASK *p_imask R4 Start address of the area where the

interrupt mask level is stored

Error Codes:
 E_PAR [p] Parameter error (p_imask is other than a multiple or

four)

Function:

Each service call refers to the interrupt mask bits (IMASK bits) of the current CPU status
register (SR) and returns the interrupt mask level to the area indicated by p_imask.

The value to be returned to p_imask has the same format as the parameter imask used by the
service call chg_ims.

Section3 Service Calls

Rev.6.00 242
REJ10B0060-0600

3.21 Service Call Management
Service Call Management Service Calls: Service call is controlled by the service calls listed in
table 3.64.

Table 3.64 Service Calls for Service Call Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_svc T/E/D/U

idef_svc

Defines extended service call

N/E/D/U

cal_svc T/E/D/U

ical_svc

Calls service call

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Service Call Management Specifications: The service call management specifications are
listed in table 3.65.

Table 3.65 Service Call Management Specifications

Item Description

Function code of extended service call 1 to CFG_MAXSVCCD (1023 max.)

Parameter that can be passed 0 to four VP_INT type parameters

Attribute supported TA_HLNG: The task is written in a high-level language
TA_ASM: The task is written in assembly language

Section3 Service Calls

Rev.6.00 243
REJ10B0060-0600

3.21.1 Define Extended Service Call (def_svc, idef_svc)

C-Language API:
 ER ercd = def_svc (FN fncd, T_DSVC *pk_dsvc);

 ER ercd = idef_svc (FN fncd, T_DSVC *pk_dsvc);

Parameters:
 FN fncd R4 Function code of extended service call

 T_DSVC *pk_dsvc R5 Start address of the extended service

call routine definition information

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Packet Structure:
 typedef struct t_dsvc {

 ATR svcatr; 0 4 Extended service call routine attribute

 FP svcrtn; +4 4 Extended service call routine address

 } T_DSVC;

Error Codes:
 E_RSATR [p] Invalid attribute (svcatr is invalid)

 E_PAR [p] Parameter error (pk_dsvc is other than a multiple of four,

svcrtn is an odd address, fncd ≤ 0, or fncd >

CFG_MAXSVCCD)

Function:

The service calls def_svc and idef_svc define an extended service call routine for the extended
function code indicated by fncd with the contents specified by pk_dsvc.

The parameter svcatr is specified in the following format. See table 3.66 for details.

svcatr:= ((TA_HLNG || TA_ASM))

Table 3.66 Extended Service Routine Attributes (svcatr)

svcatr Code Description

TA_HLNG H'00000000 The extended service call routine is written in a high-
level language

TA_ASM H'00000001 The extended service call routine is written in
assembly language

The parameter svcrtn specifies the start address of the extended service call routine.

If pk_dsvc = NULL (0) is specified for svcatr in the service call def_svc, the extended service
call routine defined for fncd is cancelled.

The state of calling task is taken over in extended service call routines.

Section3 Service Calls

Rev.6.00 244
REJ10B0060-0600

3.21.2 Call Service Call (cal_svc, ical_svc)

C-Language API:
 ER_UINT ercd = cal_svc (FN fncd, …);

 ER_UINT ercd = ical_svc (FN fncd, …);

Parameters:
 FN fncd @R15 Function code of extended service call

 In “…” above, up to four VP_INT-type parameters can be substituted. If

more than four parameters are specified, only the first four parameters are

passed to the extended service call routine.

 VP_INT par1 @(4,R15) Parameter 1

 VP_INT par2 @(8,R15) Parameter 2

 VP_INT par3 @(12,R15) Parameter 3

 VP_INT par4 @(16,R15) Parameter 4

Return Parameters:
 ER_UINT ercd R0 Return value from service call

Error Codes:
 E_RSFN [p] Reserved function code (fncd is invalid or cannot be used)

Function:

Each service call executes the extended service call routine corresponding to the function code
specified by the parameter fncd.

Up to four VP_INT-type parameters can be specified. In the extended service call routine to be
called, par1 to par4 are stored in R4 to R7, respectively, and passed.

For details, refer to section 4.7, Extended Service Call Routines.

Section3 Service Calls

Rev.6.00 245
REJ10B0060-0600

3.22 System Configuration Management
System Configuration Management Service Calls: System configurations are controlled by
the service calls listed in table 3.67.

Table 3.67 Service Calls for System Configuration Management

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

def_exc T/E/D/U

idef_exc

Defines CPU exception handler

N/E/D/U

vdef_trp T/E/D/U

ivdef_trp

Defines CPU exception handler (TRAPA
instruction exception) N/E/D/U

ref_cfg T/E/D/U

iref_cfg

Refers to configuration information

N/E/D/U

ref_ver T/E/D/U

iref_ver

Refers to version information

N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

System Configuration Management Specifications: The system configuration management
specifications are listed in table 3.68.

Table 3.68 System Configuration Management Specifications

Item Description

CPU exception handler number 0 to CFG_MAXVCTNO (511 max.) (HI7000/4)
0 to CFG_MAXVCTNO (H'fe0 max.) (HI7700/4, HI7750/4)

Trap number 0 to CFG_MAXTRPNO (255 max.)

Attribute supported TA_HLNG: The task is written in a high-level language
TA_ASM: The task is written in assembly language

Restrictions (HI7700/4, HI7750/4) An exception with an exception code other than a multiple of
H'20 is not accepted. Note that such exceptions are not
caused.

Section3 Service Calls

Rev.6.00 246
REJ10B0060-0600

3.22.1 Define CPU Exception Handler (def_exc, idef_exc)

C-Language API:
 ER ercd = def_exc(EXCNO excno, T_DEXC *pk_dexc);

 ER ercd = idef_exc(EXCNO excno, T_DEXC *pk_dexc);

Parameters:
 EXCNO excno R4 CPU exception handler number

 T_DEXC *pk_dexc R5 Start address of the definition

information of CPU exception handler

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Packet Structure:
 typedef struct t_dexc{

 ATR excatr; 0 4 Handler attribute

 FP exchdr; +4 4 Handler address

 UINT excsr; +8 4 SR at initiation (ignored in HI7000/4)

 }T_DEXC;

Error Codes:
 E_RSATR [p] Invalid attribute (excatr is invalid)

 E_PAR [p] Parameter error (pk_dexc is other than a multiple of four or

exchdr is an odd value)

 HI7000/4:

Invalid number specification

(excno = 25 or 26, or excno > CFG_MAXVCTNO)

 HI7700/4, HI7750/4:

Invalid number specification (excno is other than a multiple

of H'20, excno = H'160, or excno > CFG_MAXVCTNO)

Function:

The handler for the CPU exception handler number specified by excno is defined as the content
specified by pk_dexc.

The CPU exception handler number is, for the HI7000/4, the CPU vector number, and for the
HI7700/4 and HI7750/4, the CPU exception code (EXPEVT code).

For the HI7700/4 and HI7750/4, CPU exception handlers cannot be defined for exception codes
for which the EXPEVT code is other than a multiple of H'20. Operation is not guaranteed for
exceptions which occur with codes other than multiples of H'20, such as TLB exceptions due to
SH3-DSP repeat loops (exception codes H'070 and H'0D0).

The parameter excatr is specified in the following format. See table 3.69 for details.

 excatr := (TA_HLNG || TA_ASM)

Section3 Service Calls

Rev.6.00 247
REJ10B0060-0600

Table 3.69 CPU Exception Handler Attributes (excatr)

excatr Code Description

TA_HLNG H'00000000 The handler is written in a high-level language

TA_ASM H'00000001 The handler is written in assembly language

On the HI7700/4 and HI7750/4, excsr sets the value of the status register (SR) when initiating
the interrupt handler. excsr is specified using the same bit position as the SR configuration. For
information of SR register, see section 4.2.1, SR Register and section 4.2.2, Cache Lock
Function (SH-3, SH3-DSP).

On actual interrupt handler initiation, SR is as follows.

• Interrupt mask bit

Same as before the exception occurred.

• Bits other than the CPU exception mask bit

As specified by excsr

In the HI7000/4, the setting of excsr has no meaning, and is simply ignored. The actual value of
SR on startup is determined by the CPU interrupt processing.

When pk_dexc = NULL (0) is specified, the definition of excno is cancelled.

Service calls which can be called from a CPU exception handler are limited to the following
service calls. If calls other than the following are called, operation is not guaranteed.

• sns_tex

• sns_ctx

• sns_loc

• sns_dsp

• sns_dpn

• get_tid, iget_tid

• ras_tex, iras_tex

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

CPU exception handlers can also be defined statically by the configurator.

In order to define a CPU exception handler for a TRAPA instruction, the service call vdef_trp or
ivdef_trp should be used instead of the service calls def_exc and idef_exc.

excsr is a member not defined in the μITRON4.0 specification.

Section3 Service Calls

Rev.6.00 248
REJ10B0060-0600

3.22.2 Define CPU Exception (TRAPA Instruction Exception) Handler (vdef_trp,
ivdef_trp)

C-Language API:
 ER ercd = vdef_trp(UINT dtrpno, T_DTRP *pk_dtrp);

 ER ercd = ivdef_trp(UINT dtrpno, T_DTRP *pk_dtrp);

Parameters:
 UINT dtrpno R4 Trap number

 T_DTRP *pk_dtrp R5 Pointer to the packet where the CPU

exception (TRAPA instruction exception)

handler definition information is stored

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Packet Structure:
 typedef struct t_dtrp{

 ATR trpatr; 0 4 CPU exception (TRAPA instruction

exception) handler attribute

 FP trphdr; +4 4 CPU exception (TRAPA instruction

exception) handler address

 UINT trpsr; +8 4 SR at CPU exception (TRAPA

instruction exception) handler

initiation

 }T_DTRP;

Error Codes:
 E_RSATR [p] Invalid attribute (trpatr is invalid)

 E_PAR [p] Parameter error (pk_dtrp is other than a multiple of four

or trphdr is an odd address)

 HI7000/4:

Invalid number specification

(trpno = 25 or 26, or trpno > CFG_MAXVCTNO)

 HI7700/4, HI7750/4:

Invalid number specification (trpno > CFG_MAXTRPNO)

Function:

Each service call defines a CPU exception (TRAPA instruction exception) handler for the trap
number indicated by dtrpno, with the contents specified by pk_dtrp.

The parameter trpatr is specified in the following format. See table 3.70 for details.

trpatr:= (TA_HLNG || TA_ASM)

Section3 Service Calls

Rev.6.00 249
REJ10B0060-0600

Table 3.70 CPU Exception (TRAPA Instruction Exception) Handler Attributes
(trpatr)

trpatr Code Description

TA_HLNG H'00000000 The trap routine is written in a high-level
language

TA_ASM H'00000001 The trap routine is written in assembly
language

The start address of the CPU exception (TRAPA instruction exception) handler is specified by
trphdr. For the HI7700/4 and HI7750/4, the value of the status register (SR) when initiating the
CPU exception handler must be specified in trpsr. trpsr is specified using the same bit position
as the SR configuration. For information of SR register, see section 4.2.1, SR Register and
section 4.2.2, Cache Lock Function (SH-3, SH3-DSP).

On actual CPU exception handler initiation, SR is as follows.

• Interrupt mask bit

Same as before the exception occurred.

• Bits other than the CPU exception mask bit

As specified by trpsr

In the HI7000/4, the setting of trpsr has no meaning, and is simply ignored. The actual value of
SR on startup is determined by the CPU exception processing.

When pk_dtrp = NULL (0) is specified, the definition of dtrpno is cancelled.

Service calls which can be called from a CPU exception (TRAPA instruction exception) handler
are limited to the following service calls. If calls other than the following are called, normal
system operation is not guaranteed.

• sns_tex

• sns_ctx

• sns_loc

• sns_dsp

• sns_dpn

• get_tid, iget_tid

• ras_tex, iras_tex

• vsta_knl, ivsta_knl

• vsys_dwn, ivsys_dwn

CPU exception (TRAPA instruction exception) handlers can also be defined statically by the
configurator.

The service calls vdef_trp and ivdef_trp are functions original to the HI7000/4 series.

Section3 Service Calls

Rev.6.00 250
REJ10B0060-0600

3.22.3 Refer to Configuration Information (ref_cfg, iref_cfg)

C-Language API:
 ER ercd = ref_cfg(T_RCFG *pk_rcfg);

Parameters:
 T_RCFG *pk_rcfg R4 Pointer to the packet where the configuration

information is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RCFG *pk_rcfg R4 Pointer to the packet where the configuration

information is stored

Packet Structure:
 typedef struct t_rcfg{

 ID maxtskid; 0 2 Maximum task ID

 ID ststkid; +2 2 Maximum ID of task using static

stack

 ID maxsemid; +4 2 Maximum semaphore ID

 ID maxflgid; +6 2 Maximum event flag ID

 ID maxdtqid; +8 2 Maximum data queue ID

 ID maxmbxid; +10 2 Maximum mailbox ID

 ID maxmtxid; +12 2 Maximum mutex ID

 ID maxmbfid; +14 2 Maximum message buffer ID

 ID maxmplid; +16 2 Maximum variable-size memory pool ID

 ID maxmpfid; +18 2 Maximum fixed-size memory pool ID

 ID maxcycid; +20 2 Maximum cyclic handler ID

 ID maxalmid; +22 2 Maximum alarm handler ID

 ID maxs_fncd; +24 4 Maximum function code of extended

service call

 }T_RCFG;

Error Codes:
 E_PAR [p] Parameter error (pk_rcfg is other than a multiple of four)

Function:

Each service call returns the system configuration information to the area indicated by pk_rcfg.

The following parameters are returned to the packet specified by pk_rcfg (table 3.71). The name
enclosed in parentheses is the corresponding items to be set in the configurator.

Section3 Service Calls

Rev.6.00 251
REJ10B0060-0600

Table 3.71 Parameter to Return to Packet Specified by pk_rcfg

Parameter Description

maxtskid Returns the maximum task ID (CFG_MAXTSKID)

ststkid Returns the maximum task ID (CFG_STSTKID) using static stack

maxsemid Returns the maximum semaphore ID (CFG_MAXSEMID)

maxflgid Returns the maximum event flag ID (CFG_MAXFLGID)

maxdtqid Returns the maximum data queue ID (CFG_MAXDTQID)

maxmbxid Returns the maximum mailbox ID (CFG_MAXMBXID)

maxmtxid Returns the maximum mutex ID (CFG_MAXMTXID)

maxmbfid Returns the maximum message buffer ID (CFG_MAXMBFID)

maxmplid Returns the maximum variable-size memory pool ID (CFG_MAXMPLID)

maxmpfid Returns the maximum fixed-size memory pool ID (CFG_MAXMPFID)

maxcycid Returns the maximum cyclic handler ID (CFG_MAXCYCID)

maxalmid Returns the maximum alarm handler ID (CFG_MAXALMID)

maxs_fncd Returns the maximum extended SVC function code (CFG_MAXSVCCD)

Note that the value of CFG_MAXCYCID + 1 is returned to the maxcycid when CFG_ACTION
is checked.

All members of the T_RCFG structure are not defined in the μITRON4.0 specification.

Section3 Service Calls

Rev.6.00 252
REJ10B0060-0600

3.22.4 Refer to Version Information (ref_ver, iref_ver)

C-Language API:
 ER ercd = ref_ver (T_RVER *pk_rver);

 ER ercd = iref_ver (T_RVER *pk_rver);

Parameters:
 T_RVER *pk_rver R4 Pointer to the packet where version

information is to be returned

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

 T_RVER *pk_rver R4 Pointer to the packet where version

information is stored

Packet Structure:
 typedef struct t_rver {

 UH maker; 0 2 Manufacturer

 UH prid; +2 2 Identification number

 UH spver; +4 2 Specification version

 UH prver; +6 2 Product version

 UH prno [4]; +8 8 Product management information

 } T_RVER;

Error Codes:
 E_PAR [p] Parameter error (pk_rver is an odd value)

Function:

Each service call reads information on the version of the kernel currently in use and returns it to
the area indicated by pk_rver.

The following information is returned to the packet indicated by pk_rver.

• maker

⎯ Indicates the manufacturer of this kernel. The value is H'0115, which means Renesas.
• prid

Indicates the number to identify the OS or VLSI type as follows.

⎯ HI7000/4: H'0010
⎯ HI7700/4: H'000F
⎯ HI7750/4: H'000E

Section3 Service Calls

Rev.6.00 253
REJ10B0060-0600

• spver

Indicates the specifications to which the kernel conforms, as follows.

⎯ Bits 15 to 12: MAGIC (Number to identify the TRON specification series)
H'5 (μITRON specifications) for this kernel

⎯ Bits 11 to 0: SpecVer (Version number of the TRON specification on which the product
is based)
H'400 (μITRON version 4.00.00) for this kernel

• prver

Indicates the version number of the kernel. Refer to the release note of product appending for
the value of prver. The prver of each product at this manual creation time is as follows.

⎯ HI7000/4 V.2.02.00: H'0220
⎯ HI7700/4 V.2.02.00: H'0220
⎯ HI7750/4 V.2.02.00: H'0220

• prno

Indicates the product management information and the product number.
The prno[0] to prno[3] values of this kernel are all H'0000.

Section3 Service Calls

Rev.6.00 254
REJ10B0060-0600

3.23 Cache Support Function (HI7700/4: for SH-3 and SH3-DSP)
This function is supported only for the HI7700/4 and HI7750/4. As for a cache support function,
libraries differ for every microcomputer (table 3.72). And a part of functions and API differ for
every library.

Table 3.72 Library of Cache Support Functions

Kernel CPU Target Cache Library

HI7700/4 SH-3, SH3-DSP Mixed instruction/data 7708_cache_???.lib

 SH4AL-DSP (without
extended function)

Instruction cache and operand cache sh4al_cache_???.lib

 SH4AL-DSP (with
extended function)

Instruction cache and operand cache shx2_cache_???.lib

HI7750/4 SH-4 Operand cache 7750_cache_???.lib

 SH-4A (without
extended function)

Instruction cache and operand cache sh4a_cache_???.lib

 SH-4A (with
extended function)

Instruction cache and operand cache shx2_cache_???.lib

This section explains for SH-3 and SH3-DSP (7708_cache_???.lib).

Section3 Service Calls

Rev.6.00 255
REJ10B0060-0600

Cache Support Service Calls: The cache is controlled by the service calls listed in table 3.73.

Table 3.73 Service Calls for Cache Support (for SH-3 and SH3-DSP)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

vini_cac Initializes cache T/N/E/D/U

ivini_cac T/N/E/D/U

vclr_cac Clears cache T/N/E/D/U

ivclr_cac T/N/E/D/U

vfls_cac Flushes cache T/N/E/D/U

ivfls_cac T/N/E/D/U

vinv_cac Invalidates cache T/N/E/D/U

ivinv_cac T/N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 256
REJ10B0060-0600

3.23.1 Initialize Cache (vini_cac, ivini_cac)

C-Language API:
 void vini_cac(UW ccr_data, UW entnum, UW waynum);

 void ivini_cac(UW ccr_data, UW entnum, UW waynum);

Parameters:
 UW ccr_data R4 Value to be set to the cache control register of the CPU

 UW entnum R5 Number of cache entries

 UW waynum R6 Number of cache ways

Return Parameters:
 None

Error Codes:
 None

Function:

This service call initializes the cache. Before using the cache function, call this service call.

The data specified by ccr_data is set to the CCR register.

The number of entries for each cache way is specified by entnum.

The number of ways is specified by waynum.

The parameters entnum and waynum must be set according to CPU specifications and the RAM
mode. Otherwise, normal system operation cannot be guaranteed.

The following shows supported cache type and required parameters setting in the vini_cac and
ivini_cac in the HI7700/4.

Parameters Cache
Size

Typical
Microcomputers Condition ccr_data entnum waynum

Internal RAM
mode not used

128 2 8 kbytes SH7708 series,
SH7709

Internal RAM
mode used

128 4

16 kbytes SH7706, SH7709S,
SH7727, SH7641,
SH7660

--- 256 4

32 kbytes mode 512 4 32 kbytes SH7290, SH7294,
SH7300, SH7705,
SH7710

16 kbytes mode

Specify a value
according to the
MCU's
specification

256 4

Section3 Service Calls

Rev.6.00 257
REJ10B0060-0600

If the usage of these service calls is mistaken, coherence between the cache and the memory
might not be maintained. When the contents of the cache may not have been written back to the
memory and you need to be sure that they have been written back, make the vfls_cac or
ivfls_cac service call to flush the cache before issuing this service call. Specify a value for
ccr_data such that the CCR.CF bit becomes 1.

When the CCR3 (in the SH7290, etc.) register is to be set, the CCR3 register must be set in the
application before this service call is made. Do not access the cache during the period between
setting of the CCR3 register and return of program flow from vini_cac or ivini_cac. For
example, have the cache disabled while setting the CCR3 register and issuing vini_cac or
ivini_cac.

In the same way, when the CCR2 (in the SH7709S, SH7290, etc.) register is to be set, the CCR2
register must be set in the application before this service call is made. Do not access the cache
between setting of the CCR2 register and the return from vini_cac or ivini_cac. For example,
have the cache disabled while setting the CCR2 register and issuing vini_cac or ivini_cac.

This service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR).

Section3 Service Calls

Rev.6.00 258
REJ10B0060-0600

3.23.2 Clear Cache (vclr_cac, ivclr_cac)

C-Language API:
 ER ercd = vclr_cac (VP clradr1, VP clradr2);

 ER ercd = ivclr_cac (VP clradr1, VP clradr2);

Parameters:
 VP clradr1 R4 Start address

 VP clradr2 R5 End address

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (clradr1 > clradr2)

Function:

This service call clears the cache.

If the addresses from clradr1 to clradr2 are cached, the cache contents are invalidated. The
contents that have not yet been written to memory are written to memory.

clradr1 and clradr2 must be within physical addresses H'0 to H'1bffffff. If an address outside the
range from H'0 to H'1bffffff is specified for clradr1 or clradr2, normal system operation cannot
be guaranteed.

To specify all cache contents, specify clradr1 = 0 and clradr2 = H'1bffffff.

In the SH-3 and SH3-DSP, the cache line size is 16 bytes; four least significant bits of clradr1
are corrected to 0s and four least significant bits of clradr2 are corrected to 1s.

If this service call is called before calling the service call vini_cac or ivini_cac, normal system
operation cannot be guaranteed.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be cleared irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 259
REJ10B0060-0600

3.23.3 Flush Cache (vfls_cac, ivfls_cac)

C-Language API:
 ER ercd = vfls_cac (VP flsadr1, VP flsadr2);

 ER ercd = ivfls_cac (VP flsadr1, VP flsadr2);

Parameters:
 VP flsadr1 R4 Flush start address

 VP flsadr2 R5 Flush end address

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (flsadr1 > flsadr2)

Function:

This service call flushes the cache.

If the addresses from flsadr1 to flsadr2 are cached, the contents that have not yet been written to
memory are written to memory.

flsadr1 and flsadr2 must be within physical addresses H'0 to H'1bffffff. If an address outside the
range from H'0 to H'1bffffff is specified for flsadr1 or flsadr2, normal system operation cannot
be guaranteed.

To specify all cache contents, specify flsadr1 = 0 and flsadr2 = H'1bffffff.

In the SH-3 and SH3-DSP, the cache line size is 16 bytes; four least significant bits of flsadr1
are corrected to 0s and four least significant bits of flsadr2 are corrected to 1s.

If this service call is called before calling the service call vini_cac or ivini_cac, the normal
system operation cannot be guaranteed.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be flushed irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 260
REJ10B0060-0600

3.23.4 Invalidate Cache (vinv_cac, ivinv_cac)

C-Language API:
 ER ercd = vinv_cac (void);

 ER ercd = ivinv_cac (void);

Parameters:
 None

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 None

Function:

This service call invalidates the cache.

Keep in mind that the contents are canceled even if there is data which is not written back to the
memory yet in the cache.

This service call sets the cache flush bit (CF) in the cache control register (CCR) to 1 to
invalidate all cached contents.

If this service call is called before calling the service call vini_cac or ivini_cac, the normal
system operation cannot be guaranteed.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be invalidated irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 261
REJ10B0060-0600

3.24 Cache Support Function (HI7750/4: for SH-4)
This function is supported only for the HI7700/4 and HI7750/4. As for a cache support function,
libraries differ for every microcomputer (table 3.74). And a part of functions and API differ for
every library.

Table 3.74 Library of Cache Support Functions

Kernel CPU Target Cache Library

HI7700/4 SH-3, SH3-DSP Mixed instruction/data 7708_cache_???.lib

 SH4AL-DSP (without
extended function)

Instruction cache and operand cache sh4al_cache_???.lib

 SH4AL-DSP (with
extended function)

Instruction cache and operand cache shx2_cache_???.lib

HI7750/4 SH-4 Operand cache 7750_cache_???.lib

 SH-4A (without
extended function)

Instruction cache and operand cache sh4a_cache_???.lib

 SH-4A (with
extended function)

Instruction cache and operand cache shx2_cache_???.lib

This section explains for SH-4 (7750_cache_???.lib).

Section3 Service Calls

Rev.6.00 262
REJ10B0060-0600

Cache Support Service Calls: The cache is controlled by the service calls listed in table 3.75.

Table 3.75 Service Calls for Cache Support (for SH-4)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

vini_cac Initializes cache T/N/E/D/U

ivini_cac T/N/E/D/U

vclr_cac Clears operand cache T/N/E/D/U

ivclr_cac T/N/E/D/U

vfls_cac Flushes operand cache T/N/E/D/U

ivfls_cac T/N/E/D/U

vinv_cac Invalidates operand cache T/N/E/D/U

ivinv_cac T/N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 263
REJ10B0060-0600

3.24.1 Initialize Cache (vini_cac, ivini_cac)

C-Language API:
 void vini_cac(UW ccr_data);

 void ivini_cac(UW ccr_data);

Parameters:
 UW ccr_data R4 Value to be set to the cache control register of the CPU

Return Parameters:
 None

Error Codes:
 None

Function:

This service call initializes the cache. Before using the cache function, call this service call.

The data specified by ccr_data is set to the CCR register.

If the usage of these service calls is mistaken, coherence between the cache and the memory
might not be maintained. When the contents of the cache may not have been written back to the
memory and you need to be sure that they have been written back, make the vfls_cac or
ivfls_cac service call to flush the cache before issuing this service call. Specify a value for
ccr_data such that the CCR.CF bit becomes 1.

This service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR).

Section3 Service Calls

Rev.6.00 264
REJ10B0060-0600

3.24.2 Clear Operand Cache (vclr_cac, ivclr_cac)

C-Language API:
 ER ercd = vclr_cac (VP clradr1, VP clradr2);

 ER ercd = ivclr_cac (VP clradr1, VP clradr2);

Parameters:
 VP clradr1 R4 Start address

 VP clradr2 R5 End address

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (clradr1 > clradr2)

Function:

This service call clears the operand cache.

If the addresses from clradr1 to clradr2 are cached in the operand cache, the cache contents are
invalidated. The contents that have not yet been written to memory are written to memory.

clradr1 and clradr2 must be logical addresses.

If the address range from clradr1 to clradr2 includes one of the following, normal system
operation cannot be guaranteed.

• Address corresponding to an physical address in area 7

• Address in P2 or P4 area

To specify all cache contents, specify clradr1 = H'80000000 and clradr2 = H'9bffffff.

In the SH-4, the cache line size is 32 bytes; five least significant bits of clradr1 are corrected to
0s and five least significant bits of clradr2 are corrected to 1s.

This service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be cleared irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 265
REJ10B0060-0600

3.24.3 Flush Operand Cache (vfls_cac, ivfls_cac)

C-Language API:
 ER ercd = vfls_cac (VP flsadr1, VP flsadr2);

 ER ercd = ivfls_cac (VP flsadr1, VP flsadr2);

Parameters:
 VP flsadr1 R4 Flush start address

 VP flsadr2 R5 Flush end address

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (flsadr1 > flsadr2)

Function:

This service call flushes the operand cache.

If the addresses from flsadr1 to flsadr2 are cached in the operand cache, the contents that have
not yet been written to memory are written to memory.

flsadr1 and flsadr2 must be logical addresses.

If the address range from flsadr1 to flsadr2 includes one of the following addresses, normal
system operation cannot be guaranteed.

• Address corresponding to an physical address in area 7

• Address in P2 or P4 area

To specify all cache contents, specify flsadr1 = H'80000000 and flsadr2 = H'9bffffff.

In the SH-4, the cache line size is 32 bytes; five least significant bits of flsadr1 are corrected to
0s and five least significant bits of flsadr2 are corrected to 1s.

This service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be flushed irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 266
REJ10B0060-0600

3.24.4 Invalidate Operand Cache (vinv_cac, ivinv_cac)

C-Language API:
 ER ercd = vinv_cac (VP invadr1, VP invadr2);

 ER ercd = ivinv_cac (VP invadr1, VP invadr2);

Parameters:
 VP invadr1 R4 Start address of invalidation

 VP invadr2 R5 End address of invalidation

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (invadr1 > invadr2)

Function:

This service call invalidates the operand cache.

Keep in mind that the contents are canceled even if there is data which is not written back to the
memory yet in the cache.

If the addresses from invadr1 to invadr2 are cached in the operand cache, the contents are
invalidated even if the contents have not yet been written to memory.

invadr1 and invadr2 must be logical addresses.

If the address range from invadr1 to invadr2 includes one of the following addresses, normal
system operation cannot be guaranteed.

• Address corresponding to an physical address in area 7

• Address in P2 or P4 area

To specify all cache contents, specify invadr1 = H'80000000 and invadr2 = H'9bffffff.

In the SH-4, the cache line size is 32 bytes; five least significant bits of invadr1 are corrected to
0s and five least significant bits of invadr2 are corrected to 1s.

This service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be invalidated irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 267
REJ10B0060-0600

3.25 Cache Support Function (HI7700/4: for SH4AL-DSP without
Extended Function, HI7750/4: for SH-4A without Extended
Function)

This function is supported only for the HI7700/4 and HI7750/4. As for a cache support function,
libraries differ for every microcomputer (table 3.76). And a part of functions and API differ for
every library.

Table 3.76 Library of Cache Support Functions

Kernel CPU Target Cache Library

HI7700/4 SH-3, SH3-DSP Mixed instruction/data 7708_cache_???.lib

 SH4AL-DSP
(without extended
function)

Instruction cache and operand
cache

sh4al_cache_???.lib

 SH4AL-DSP (with
extended function)

Instruction cache and operand cache shx2_cache_???.lib

HI7750/4 SH-4 Operand cache 7750_cache_???.lib

 SH-4A (without
extended function)

Instruction cache and operand
cache

sh4a_cache_???.lib

 SH-4A (with
extended function)

Instruction cache and operand cache shx2_cache_???.lib

The specifications of the library for SH4AL-DSP without extended function
(sh4al_cache_???.lib) and the library for SH-4A without extended function (sh4a_cache_???.lib)
are the same, and this section explains the specification of them.

In addition, be sure to refer to following sections.

• 5.7, When Cache Support Function is Used on SH4AL-DSP (HI7700/4) or SH-4A
(HI7750/4).

• 5.11.1, CPU Options for the Compiler and Assembler.

Section3 Service Calls

Rev.6.00 268
REJ10B0060-0600

Cache Support Service Calls: The cache is controlled by the service calls listed in table 3.77.

Table 3.77 Service Calls for Cache Support (for SH4AL-DSP without Extended
Function and SH-4A without Extended Function)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

vini_cac Initializes cache T/N/E/D/U

ivini_cac T/N/E/D/U

vclr_cac Clears instruction/operand cache T/N/E/D/U

ivclr_cac T/N/E/D/U

vfls_cac Flushes operand cache T/N/E/D/U

ivfls_cac T/N/E/D/U

vinv_cac Invalidates instruction/operand cache T/N/E/D/U

ivinv_cac T/N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 269
REJ10B0060-0600

3.25.1 Initialize Cache (vini_cac, ivini_cac)

C-Language API:
 void vini_cac(ATR cacatr);

 void ivini_cac(ATR cacatr);

Parameters:
 ATR ccratr R4 Cache attribute

Return Parameters:
 ER ercd R0 Normal end (E_OK)

Error Codes:
 None

Function:

This service call initializes the cache. Before using the cache function, call this service call.

Specifically, based on specified cacatr, as shown in table 3.78, the CCR register and RAMCR
register of a processor are set up.

Although the logical sum of each item of table 3.78 can be specified to be cacatr, no error check
of the value specified to be cacatr is performed.

Moreover, this service call is not concerned with the contents of specification of cacatr, but
writes 1 in the CCR.ICI and CCR.OCI bit. That is, all the contents of the cache before this
service call are canceled.

In addition, in this service call, no registers other than CCR and RAMCR are changed.

This service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR).

Section3 Service Calls

Rev.6.00 270
REJ10B0060-0600

Table 3.78 Cache Attribute

Attribute Value Description

CCR and RAMCR

Setting

TCAC_IC_ENABLE H'00000100 When
specify

Enable instruction
cache

CCR.ICE = 1

 When not
specify

Disable instruction
cache

CCR.ICE = 0

TCAC_OC_ENABLE H'00000001 When
specify

Enable operand cache CCR.OCE = 1

 When not
specify

Disable operand cache CCR.OCE = 0

TCAC_IC_2WAY H'00800000 When
specify

2-way instruction cache RAMCR.IC2W = 1

 When not
specify

4-way instruction cache RAMCR.IC2W = 0

TCAC_OC_2WAY H'00400000 When
specify

2-way operand cache RAMCR.OC2W =
1

 When not
specify

4-way operand cache RAMCR.OC2W =
0

TCAC_P1_CB H'00000004 When
specify

Writing mode for P1
area is write-back
mode

CCR.CB = 1

 When not
specify

Writing mode for P1
area is write-through
mode

CCR.CB = 0

TCAC_P0_WT H'00000002 When
specify

Writing mode for P0/U0
area is write-through
mode

CCR.WT = 1

 When not
specify

Writing mode for P0/U0
area is write-back
mode

CCR.WT = 0

Section3 Service Calls

Rev.6.00 271
REJ10B0060-0600

3.25.2 Clear Instruction/Operand Cache (vclr_cac, ivclr_cac)

C-Language API:
 ER ercd = vclr_cac (VP clradr1, VP clradr2, MODE mode);

 ER ercd = ivclr_cac (VP clradr1, VP clradr2, MODE mode);

Parameters:
 VP clradr1 R4 Start address

 VP clradr2 R5 End address

 MODE mode R6 Target cache

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (clradr1 > clradr2 or mode is invalid)

 E_OBJ [k] Target cache is disabled.

Function:

This service call clears the cache. That is, the cache contents are invalidated. If the operand
cache has data which has not been written to memory, the data is written-back to memory.

The target cache are determined by mode. Following either can be specified to be mode.

• TC_FULL(H'00000000): Both instruction cache and operand cache
• TC_EXCLUDE_IC(H'00000001): Exclude instruction cache (only operand cache)
• TC_EXCLUDE_OC(H'00000002): Exclude operand cache (only instruction cache)

clradr1 is omitted to the multiple of 32, and clradr2 is revalued to the multiple -1 of 32.

(1) Clear specified range

This service call clears the cache entry whose logical address is from clradr1 to clradr2. If
operand cache are contained in target, before canceling a dirty entry, it is written-back to
memory.

This service call repeats and executes the following instructions from clradr1 to clradr2.

• mode = TC_FULL: ICBI and OCBP
• mode = TC_EXCLUDE_IC: OCBI
• mode = TC_EXCLUDE_OC: ICBI

This processing is performed in the state of SR.BL = 0 and SR.I = 15. However, whenever it
processes one entry, this service call restores SR at the time of this call. That is, interruption may
be accepted by SR at the time of this call.

Section3 Service Calls

Rev.6.00 272
REJ10B0060-0600

In this service call, only the fundamental error check indicated in the error code column is
performed about clradr1 and clradr2. For example, the following addresses should not be
contained.

• P2 and P4 areas
• Address corresponding to a physical address in the control area
• Address corresponding to a physical address in X/Y memory

The processing time of this service call is proportional to the size of the appointed domain.

(2) Clear all

If 0 is specified to be clradr1 and H'ffffffff is specified to be clradr2, all the entries of the target
cache determined by mode will be cleared. In this case, this service call is processed as follows.

1. When mode is TC_FULL or TC_EXCLUDE_OC, it is setting 1 as the ICI bit of a
CCR register, and all the entries of instruction cache are cleared. This processing is
performed in the state of SR.BL = 1.

2. When mode is TC_FULL or TC_EXCLUDE_IC, all entries of operand cache are
cleared after writing-back the dirty entry of operand cache to memory. This
processing is performed in the state of SR.BL = 1. However, whenever it processes
one entry, this service call restores SR at the time of this call. That is, interruption
may be accepted by SR at the time of this call.

In the HI7750/4, this service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be cleared irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 273
REJ10B0060-0600

3.25.3 Flush Operand Cache (vfls_cac, ivfls_cac)

C-Language API:
 ER ercd = vfls_cac (VP flsadr1, VP flsadr2);

 ER ercd = ivfls_cac (VP flsadr1, VP flsadr2);

Parameters:
 VP flsadr1 R4 Flush start address

 VP flsadr2 R5 Flush end address

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (flsadr1 > flsadr2)

 E_OBJ [k] Operand cache is disabled.

Function:

This service call flushes the operand cache. That is, If the operand cache has data which has not
been written to memory, the data is written-back to memory.

flsadr1 is omitted to the multiple of 32, and flsadr2 is revalued to the multiple -1 of 32.

(1) Flush specified range

This service call flushes the operand cache entry whose logical address is from flsadr1 to
flsadr2.

This service call repeats and executes the OCBWB instruction from flsadr1 to flsadr2. This
processing is performed in the state of SR.BL = 0 and SR.I = 15. However, whenever it
processes one entry, this service call restores SR at the time of this call. That is, interruption may
be accepted by SR at the time of this call.

In this service call, only the fundamental error check indicated in the error code column is
performed on flsadr1 and flsadr2. For example, the following addresses should not be contained.

• P2 and P4 areas
• Address corresponding to a physical address in the control area
• Address corresponding to a physical address in X/Y memory

The processing time of this service call is proportional to the size of the appointed domain.

Section3 Service Calls

Rev.6.00 274
REJ10B0060-0600

(2) Flush all

If 0 is specified to be flsadr1 and H'ffffffff is specified to be flsadr2, all the entries of the
operand cache will be cleared. In this case, this service call is processed as follows.

• The operand cache entry which is dirty is written-back to memory. This processing is
performed in the state of SR.BL = 1. However, whenever it processes one entry, this
service call restores SR at the time of this call. That is, interruption may be accepted
by SR at the time of this call.

In the HI7750/4, this service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be flushed irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 275
REJ10B0060-0600

3.25.4 Invalidate Instruction/Operand Cache (vinv_cac, ivinv_cac)

C-Language API:
 ER ercd = vinv_cac (VP invadr1, VP invadr2, MODE mode);

 ER ercd = ivinv_cac (VP invadr1, VP invadr2, MODE mode);

Parameters:
 VP invadr1 R4 Start address of invalidation

 VP invadr2 R5 End address of invalidation

 MODE mode R6 Target cache

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (invadr1 > invadr2 or mode is invalid)

 E_OBJ [k] Target cache is disabled.

Function:

The service call vinv_cac invalidates the cache. It is canceled even if the data which has not
been written-back to memory is in operand cache.

The target cache are determined by mode. Following either can be specified to be mode.

• TC_FULL(H'00000000): Both instruction cache and operand cache
• TC_EXCLUDE_IC(H'00000001): Exclude instruction cache (only operand cache)
• TC_EXCLUDE_OC(H'00000002): Exclude operand cache (only instruction cache)

invadr1 is omitted to the multiple of 32, and invadr2 is revalued to the multiple -1 of 32.

(1) Invalidate specified range

This service call invalidates the cache entry whose logical address is from invadr1 to invadr2.

This service call repeats and executes the following instructions from clradr1 to clradr2.

• mode = TC_FULL: ICBI and OCBI
• mode = TC_EXCLUDE_IC: OCBI
• mode = TC_EXCLUDE_OC: ICBI

This processing is performed in the state of SR.BL = 0 and SR.I = 15. However, whenever it
processes one entry, this service call restores SR at the time of this call. That is, interruption may
be accepted by SR at the time of this call.

Section3 Service Calls

Rev.6.00 276
REJ10B0060-0600

In this service call, only the fundamental error check indicated in the error code column is
performed on invadr1 and invadr2. For example, the following addresses should not be
contained.

• P2 and P4 areas
• Address corresponding to a physical address in the control area
• Address corresponding to a physical address in X/Y memory

The processing time of this service call is proportional to the size of the appointed domain.

(2) Invalidate all

If 0 is specified to be invadr1 and H'ffffffff is specified to be invadr2, all the entries of the target
cache determined by mode will be invalidated. In this case, this service call operates the
following bits of the CCR register according to mode. This processing is performed in the state
of SR.BL = 1.

• mode = TC_FULL: Writes 1 to ICI bit and OCI bit
• mode = TC_EXCLUDE_IC: Writes 1 to OCI bit
• mode = TC_EXCLUDE_OC: Writes 1 to ICI bit

In the HI7750/4, this service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be invalidated irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 277
REJ10B0060-0600

3.26 Cache Support Function (HI7700/4: for SH4AL-DSP with
Extended Function, HI7750/4: for SH-4A with Extended Function)

This function is supported only for the HI7700/4 and HI7750/4. As for a cache support function,
libraries differ for every microcomputer (table 3.79). And a part of functions and API differ for
every library.

Table 3.79 Library of Cache Support Function

Kernel CPU Target Cache Library

HI7700/4 SH-3, SH3-DSP Mixed instruction/data 7708_cache_???.lib

 SH4AL-DSP (without
extended function)

Instruction cache and operand cache sh4al_cache_???.lib

 SH4AL-DSP (with
extended function)

Instruction cache and operand
cache

shx2_cache_???.lib

HI7750/4 SH-4 Operand cache 7750_cache_???.lib

 SH-4A (without
extended function)

Instruction cache and operand cache sh4a_cache_???.lib

 SH-4A (with
extended function)

Instruction cache and operand
cache

shx2_cache_???.lib

The specifications of the library for SH4AL-DSP with extended function (shx2_cache_???.lib)
and the library for SH-4A with extended function (shx2_cache_???.lib) are the same, and this
section explains the specification of them.

In addition, be sure to refer to the following sections.

• 5.7, When Cache Support Function is Used on SH4AL-DSP (HI7700/4) or SH-4A
(HI7750/4).

• 5.11.1, CPU Options for the Compiler and Assembler.

Section3 Service Calls

Rev.6.00 278
REJ10B0060-0600

Cache Support Service Calls: The cache is controlled by the service calls listed in table 3.80.

Table 3.80 Service Calls for Cache Support (for SH4AL-DSP with Extended Function
and SH-4A with Extended Function)

 System State*2

Service Call*1 Description T/N/E/D/U/L/C

vini_cac Initializes cache T/N/E/D/U

ivini_cac T/N/E/D/U

vclr_cac Clears instruction/operand cache T/N/E/D/U

ivclr_cac T/N/E/D/U

vfls_cac Flushes operand cache T/N/E/D/U

ivfls_cac T/N/E/D/U

vinv_cac Invalidates instruction/operand cache T/N/E/D/U

ivinv_cac T/N/E/D/U

Notes: 1. [S]: Standard profile service calls
[s]: Service calls that are not standard profile service calls but are needed in order to
use the standard profile function

 2. T: Can be called from task context
N: Can be called from non-task context
E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state
L: Can be called from CPU-locked state
C: Can be called from CPU exception handler

Section3 Service Calls

Rev.6.00 279
REJ10B0060-0600

3.26.1 Initialize Cache (vini_cac, ivini_cac)

C-Language API:
 void vini_cac(ATR cacatr);

 void ivini_cac(ATR cacatr);

Parameters:
 ATR ccratr R4 Cache attribute

Return Parameters:
 ER ercd R0 Normal end (E_OK)

Error Codes:
 None

Function:

This service call initializes the cache. Before using the cache function, call this service call.

Specifically, based on specified cacatr, as shown in table 3.78, the CCR register and RAMCR
register of a processor are set up.

Although the logical sum of each item of table 3.81 can be specified to be cacatr, no error check
of the value specified to be cacatr is performed.

Moreover, this service call is not concerned with the contents of specification of cacatr, but
writes 1 in the CCR.ICI and CCR.OCI bit. That is, all the contents of the cache before this
service call are canceled.

When the target microcomputer does not have a secondary cache, do not specify
TCAC_L2_ENABLE or TCAC_L2_FC.

In addition, in this service call, no registers other than CCR and RAMCR are changed.

This service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR).

Section3 Service Calls

Rev.6.00 280
REJ10B0060-0600

Table 3.81 Cache Attribute

Attribute Value Description

CCR and
RAMCR

Setting

TCAC_IC_ENABLE H'00000100 When
specify

Enable instruction
cache

CCR.ICE = 1

 When not
specify

Disable instruction
cache

CCR.ICE = 0

TCAC_OC_ENABLE H'00000001 When
specify

Enable operand cache CCR.OCE = 1

 When not
specify

Disable operand cache CCR.OCE = 0

TCAC_IC_2WAY H'00800000 When
specify

2-way instruction cache RAMCR.IC2W = 1

 When not
specify

4-way instruction cache RAMCR.IC2W = 0

TCAC_OC_2WAY H'00400000 When
specify

2-way operand cache RAMCR.OC2W =
1

 When not
specify

4-way operand cache RAMCR.OC2W =
0

TCAC_P1_CB H'00000004 When
specify

Writing mode for P1
area is write-back mode

CCR.CB = 1

 When not
specify

Writing mode for P1
area is write-through
mode

CCR.CB = 0

TCAC_P0_WT H'00000002 When
specify

Writing mode for P0/U0
area is write-through
mode

CCR.WT = 1

 When not
specify

Writing mode for P0/U0
area is write-back mode

CCR.WT = 0

TCAC_IC_WPD H'00200000 When
specify

Does not predict the
instruction cache way

CCR.ICWPD = 1

 When not
specify

Predicts the instruction
cache way

CCR.ICWPD = 0

TCAC_L2_ENABLE H'00010000 When
specify

Enable secondary
cache

RAMCR.L2E = 1

 When not
specify

Disable secondary
cache

RAMCR.L2E = 0

Section3 Service Calls

Rev.6.00 281
REJ10B0060-0600

Table 3.81 Cache Attribute (cont)

Attribute Value Description

CCR and
RAMCR

Setting

TCAC_L2_FC H'00020000 When
specify

Secondary cache
operates in forcible
coherency mode

RAMCR.L2FC = 1

 When not
specify

Secondary cache does
not operate in forcible
coherency mode

RAMCR.L2FC = 0

Section3 Service Calls

Rev.6.00 282
REJ10B0060-0600

3.26.2 Clear Instruction/Operand Cache (vclr_cac, ivclr_cac)

C-Language API:
 ER ercd = vclr_cac (VP clradr1, VP clradr2, MODE mode);

 ER ercd = ivclr_cac (VP clradr1, VP clradr2, MODE mode);

Parameters:
 VP clradr1 R4 Start address

 VP clradr2 R5 End address

 MODE mode R6 Target cache

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (clradr1 > clradr2 or mode is invalid)

 E_OBJ [k] Target cache is disabled.

Function:

This service call clears the cache. That is, the cache contents are invalidated. If the operand
cache has data which has not been written to memory, the data is written-back to memory.

The target cache is determined by mode. Following either can be specified to be mode.

• TC_FULL(H'00000000): Both instruction cache and operand cache
• TC_EXCLUDE_IC(H'00000001): Exclude instruction cache (only operand cache)
• TC_EXCLUDE_OC(H'00000002): Exclude operand cache (only instruction cache)

clradr1 is omitted to the multiple of 32, and clradr2 is revalued to the multiple -1 of 32.

(1) Clear specified range

This service call clears the cache entry whose logical address is from clradr1 to clradr2. If
operand cache is contained in target, before canceling a dirty entry, it is written-back to memory.

This service call repeats and executes the following instructions from clradr1 to clradr2.

• mode = TC_FULL: ICBI and OCBP
• mode = TC_EXCLUDE_IC: OCBI
• mode = TC_EXCLUDE_OC: ICBI

During this processing, the SR value remains the same as when this function is called. When no
interrupt should be accepted during this function processing, mask interrupts and then call this
function.

Section3 Service Calls

Rev.6.00 283
REJ10B0060-0600

In this service call, only the fundamental error check indicated in the error code column is
performed on clradr1 and clradr2. For example, the following addresses should not be contained.

• P2 and P4 areas
• Address corresponding to a physical address in the control area
• Address corresponding to a physical address in X/Y memory

The processing time of this service call is proportional to the size of the appointed domain.

(2) Clear all

If 0 is specified to be clradr1 and H'ffffffff is specified to be clradr2, all the entries of the target
cache determined by mode will be cleared. In this case, this service call is processed as follows.

1. When mode is TC_FULL or TC_EXCLUDE_OC, it is setting 1 as the ICI bit of a
CCR register, and all the entries of instruction cache are cleared. This processing is
performed in the state of SR.BL = 1.

2. When mode is TC_FULL or TC_EXCLUDE_IC, the OCBP instruction is executed
for all entries of the memory-mapped operand cache to write back the dirty (U = 1)
entries to memory and invalidates (V = 0) them. During this processing, the SR value
remains the same as when this function is called. When no interrupt should be
accepted during this function processing, mask interrupts and then call this function.

In the HI7750/4, this service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be cleared irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 284
REJ10B0060-0600

3.26.3 Flush Operand Cache (vfls_cac, ivfls_cac)

C-Language API:
 ER ercd = vfls_cac (VP flsadr1, VP flsadr2);

 ER ercd = ivfls_cac (VP flsadr1, VP flsadr2);

Parameters:
 VP flsadr1 R4 Flush start address

 VP flsadr2 R5 Flush end address

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (flsadr1 > flsadr2)

 E_OBJ [k] Operand cache is disabled.

Function:

This service call flushes the operand cache. That is, if the operand cache has data which has not
been written to memory, the data is written-back to memory.

flsadr1 is omitted to the multiple of 32, and flsadr2 is revalued to the multiple -1 of 32.

(1) Flush specified range

This service call flushes the entries corresponding to the logical address range from flsadr1 to
flsadr2 in the operand cache, that is, when the specified entries have not been written to
memory, the entries are copied back to memory.

This service call repeats execution of the OCBWB instruction for the range from flsadr1 to
flsadr2. During this processing, the SR value remains the same as when this function is called.
When no interrupt should be accepted during this function processing, mask interrupts and then
call this function.

In this service call, only the fundamental error check indicated in the error code column is
performed on flsadr1 and flsadr2. For example, the following addresses should not be contained.

• P2 and P4 areas
• Address corresponding to a physical address in the control area
• Address corresponding to a physical address in X/Y memory

The processing time of this service call is proportional to the size of the appointed domain.

Section3 Service Calls

Rev.6.00 285
REJ10B0060-0600

(2) Flush all

If 0 is specified to be flsadr1 and H'ffffffff is specified to be flsadr2, all the entries of the
operand cache will be cleared. In this case, this service call is processed as follows.

• The OCBP instruction is executed for all entries of the memory-mapped operand
cache to write back the dirty (U = 1) entries to memory and invalidates (V = 0) them.
During this processing, the SR value remains the same as when this function is called.
When no interrupt should be accepted during this function processing, mask
interrupts and then call this function.

In the HI7750/4, this service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be flushed irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 286
REJ10B0060-0600

3.26.4 Invalidate Instruction/Operand Cache (vinv_cac, ivinv_cac)

C-Language API:
 ER ercd = vinv_cac (VP invadr1, VP invadr2, MODE mode);

 ER ercd = ivinv_cac (VP invadr1, VP invadr2, MODE mode);

Parameters:
 VP invadr1 R4 Start address of invalidation

 VP invadr2 R5 End address of invalidation

 MODE mode R6 Target cache

Return Parameters:
 ER ercd R0 Normal end (E_OK) or error code

Error Codes:
 E_PAR [p] Parameter error (invadr1 > invadr2 or mode is invalid)

 E_OBJ [k] Target cache is disabled.

Function:

The service call vinv_cac invalidates the cache. It is canceled even if the data which has not
been written-back to memory is in operand cache.

The target cache are determined by mode. Following either can be specified to be mode.

• TC_FULL(H'00000000): Both instruction cache and operand cache
• TC_EXCLUDE_IC(H'00000001): Exclude instruction cache (only operand cache)
• TC_EXCLUDE_OC(H'00000002): Exclude operand cache (only instruction cache)

invadr1 is omitted to the multiple of 32, and invadr2 is revalued to the multiple -1 of 32.

(1) Invalidate specified range

This service call invalidates the cache entry whose logical address is from invadr1 to invadr2.

This service call repeats and executes the following instructions from clradr1 to clradr2.

• mode = TC_FULL: ICBI and OCBI
• mode = TC_EXCLUDE_IC: OCBI
• mode = TC_EXCLUDE_OC: ICBI

During this processing, the SR value remains the same as when this function is called. When no
interrupt should be accepted during this function processing, mask interrupts and then call this
function.

Section3 Service Calls

Rev.6.00 287
REJ10B0060-0600

In this service call, only the fundamental error check indicated in the error code column is
performed on invadr1 and invadr2. For example, the following addresses should not be
contained.

• P2 and P4 areas
• Address corresponding to a physical address in the control area
• Address corresponding to a physical address in X/Y memory

The processing time of this service call is proportional to the size of the appointed domain.

(2) Invalidate all

If 0 is specified to be invadr1 and H'ffffffff is specified to be invadr2, all the entries of the target
cache determined by mode will be invalidated. In this case, this service call operates the
following bits of the CCR register according to mode. This processing is performed in the state
of SR.BL = 1.

• mode = TC_FULL: Writes 1 to ICI bit and OCI bit
• mode = TC_EXCLUDE_IC: Writes 1 to OCI bit
• mode = TC_EXCLUDE_OC: Writes 1 to ICI bit

In the HI7750/4, this service call can be called before the kernel is initiated.

This service call can be called even in the exception block state (BL = 1 in SR). Therefore, the
cache can be invalidated irrespective of interrupts or exceptions. When this service call has been
called when BL = 1 in SR, clear BL to 0 after returning from the service call processing.

Section3 Service Calls

Rev.6.00 288
REJ10B0060-0600

Rev.6.00 289
REJ10B0060-0600

Section 4 Application Program Creation

4.1 Header Files

4.1.1 Header Files for C/C++ Language

(1) itron.h

itron.h is a header file where the common ITRON specification definitions are described for
C/C++ language. This file can be found in the hihead folder.

(2) kernel.h and kernel_macro.h

kernel.h is a header file where the µITRON4.0 kernel specification definitions are described
for C/C++ language. kernel.h includes itron.h and kernel_macro.h that is output from the
configurator. kernel.h can be found in the hihead folder.

Section 3, Service Calls, describes the service calls by using the data types, constants, and
macros defined in the above header files. Note, however, that the above header files include
some constants and macros that are not described in section 3. These are listed in table 4.1. For
details, refer to the description on header files.

Section4 Application Program Creation

Rev.6.00 290
REJ10B0060-0600

Table 4.1 Constants and Macros

File Name Macro and Constants Description

kernel.h TMIN_TPRI Minimum task priority value (always 1)

 TMIN_MPRI Minimum message priority value (always 1)

 TKERNEL_MAKER Kernel manufacturer code

This value is the same as maker which is
returned by ref_ver service call.

 TKERNEL_PRID Kernel ID

This value is the same as prid which is returned
by ref_ver service call.

 TKERNEL_SPVER ITRON specification version number

This value is the same as spver which is returned
by ref_ver service call.

 TKERNEL_PRVER Kernel version number

This value is the same as prver which is returned
by ref_ver service call.

 TMAX_ACTCNT Maximum number of task initiation request
queues (always 15)

 TMAX_WUPCNT Maximum number of task wake-up request
queues (always 15)

 TMAX_SUSCNT Maximum number of nestings for task forced wait
request (always 15)

 TBIT_TEXPTN Number of task exception factor bits (always 32)

 TBIT_FLGPTN Number of event flag bits (always 32)

 SIZE mpfsz = TSZ_MPF(UNIT
blkcnt, UNIT blksz);

The size of fixed-size memory pool area required
to store the blkcnt number of blksz-byte memory
blocks (bytes)

 SIZE size =
VTSZ_MPFMB(UNIT blkcnt,
UNIT blksz);

The size of fixed-size memory pool management
area required to store the blkcnt number of blksz-
byte memory blocks (bytes)

 SIZE mplsz = TSZ_MPL(UNIT
blkcnt, UNIT blksz); *1

The size of variable-size memory pool area
required to store the blkcnt number of blksz-byte
memory blocks (bytes)

 SIZE mplsz =
VTSZ_MPLMB(UNIT sctnum);
*2

The size of variable-size memory pool
management area with the VTA_UNFRAGMENT
attribute (bytes)

 TMAX_MAXSEM Maximum number of resources in the semaphore
(always 65535)

Section4 Application Program Creation

Rev.6.00 291
REJ10B0060-0600

Table 4.1 Constants and Macros (cont)

File Name Macro and Constants Description

TIC_NUME Numerator of time tick cycle

TIC_DENO Denominator of time tick cycle

TMAX_TPRI Highest task priority

kernel_macro.h

TMAX_MPRI Highest message priority

 VTCFG_TBR *3 Indicates CFG_TBR

 0: "Kernel does not manage"

 1: "Only for service call"

 2: "Task context"

 VTCFG_REGBANK *3 Indicates the CFG_REGBANK setting

 0: Register bank is not used (NOTUSE)

 1: Register bank is used except NMI and UBC
(ALL)

 2: You select level to beused register bank
(SELECT)

 3: MCU has no register banks (NOBANK)

 VTCFG_BANKLVLnn *3

(nn: a value from 01 to 15)

Indicates whether or not register banks are used
with interrupts having interrupt level nn.

 0: Register bank is not used.

 1: Register bank is used.

This definition is possible only when the
CFG_REGBANK setting is other than NOBANK.

 VTCFG_MPFMANAGE Indicates CFG_MPFMANAGE

 0: Places management tables in the memory

 pool (The same method as the previous

 version)

 1: Places management table outside of

 the memory pool (Extended method)

 VTCFG_NEWMPL Indicates CFG_NEWMPL

 0: Conventional method

 1: New method (reduced fragmentation and
 faster operation)

Notes: 1. Definition differs depending on whether CFG_NEWMPL is selected

 2. Only when CFG_NEWMPL is selected
 3. Only in HI7000/4

Section4 Application Program Creation

Rev.6.00 292
REJ10B0060-0600

(3) Header Files for ID Names (kernel_id.h, kernel_id_sys.h)

An ID name can be given to each object by the configurator. The configurator outputs the
specified ID name to the ID name header file. Application can specify an object ID by using its
ID name. For details, refer to section 5.4.4(1), kernel_id.h, kernel_id_sys.h.

 wup_tsk(ID_main);

4.1.2 Header Files for Assembly Language

(1) itron.inc

itron.inc is a header file where the common ITRON specification definitions are described
for assembly language. This file can be found in the hihead folder.

(2) kernel.inc

kernel.inc is a header file where the µITRON4.0 kernel specification definitions are
described for assembly language. kernel.inc includes itron.inc. kernel.inc can be
found in the hihead folder.

Section4 Application Program Creation

Rev.6.00 293
REJ10B0060-0600

4.2 Handling the CPU Resources

4.2.1 SR Register

(1) SR.IMASK bits (Interrupt Mask Bit)

Refer to section 0,

Disabling Interrupts.

(2) SR.MD Bit (Processing mode bit) (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A)

Application program must not clear MD bit. The MD bit of the SR specified in the following
operations must be 1.

• def_inh, idef_inh, def_exc, idef_exc, vdef_trp, ivdef_trp

• Definition of interrupt handlers and CPU exception handlers (including TRAPA) in the
configurator

(3) SR.RB Bit (Register bank bit) (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A)

Application programs must not change bank 1 registers. And application programs must not set
SR.RB bit to 1. The RB bit of the SR specified in the following operations must be 1.

• def_inh, idef_inh, def_exc, idef_exc, vdef_trp, ivdef_trp

• Definition of interrupt handlers and CPU exception handlers (including TRAPA) in the
configurator

(4) SR.BL Bit (Exception block bit) (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A)

In the exception block state, service calls must not be issued, unless the specific condition is
specified.

When using this bit to disable interrupts, refer to section 0,

Disabling Interrupts.

(5) SR.DSP Bit (DSP operation mode bit) (SH3-DSP, SH4AL-DSP)

When using SH3-DSP or SH4AL-DSP, do the following operations.

(a) Checks CFG_DSP in the configurator. As a result, the SR.DSP bit when the task starts
becomes 1.

(b) Interrupt handlers and CPU exception handlers

If the handler has DSP operation, the DSP bit of the SR specified in the following
operations must be 1.

• def_inh, idef_inh, def_exc, idef_exc, vdef_trp, ivdef_trp
• Definition of interrupt handlers and CPU exception handlers (including TRAPA) in

the configurator
However, refer to section 4.2.2, Cache Lock Function (SH-3, SH3-DSP), if using cache
lock function of SH-3 and SH3-DSP.

Section4 Application Program Creation

Rev.6.00 294
REJ10B0060-0600

(6) SR.CL Bit (Cache lock bit) (SH-3)

When using cache lock function on the microcomputer which has CL bit in the SR register, refer
to section 4.2.2, Cache Lock Function (SH-3, SH3-DSP).

(7) SR.FD (FPU disable bit) (SH-4 and SH-4A)

The SR.FD bit must not be set in the application programs. In other words, the FPU disable
exception of SH-4 cannot be used. The FD bit of the SR register must always be cleared to 0 in
the following cases:

• def_inh, idef_inh, def_exc, idef_exc, vdef_trp, ivdef_trp

• Definition of interrupt handlers and CPU exception handlers (including TRAPA) in the
configurator]

For further information, refer to Appendix G, Notes on FPU of SH2A-FPU, SH-4, SH4A.

4.2.2 Cache Lock Function (SH-3, SH3-DSP)

When using cache lock function, do the following operations. Note, the kernel does not control
cache lock. Application program should control cache lock.

(1) Microcomputer which has LE (Lock enable) bit in the cache control register 2 (CCR2)

In the microcomputers of this type, cache lock function is effective when CCR2.LE bit is 1. The
control of cache lock (enable and disable) is done by CCR.LE bit.

(2) Microcomputer which does not have LE (Lock enable) bit in the cache control register
2 (CCR2)

In the microcomputers of this type, cache lock function is effective when SR.DSP or SR.CL bit
is 1. To maintain cache lock state, SR.DSP or SR.CL bit is always 1. It is necessary to do the
following for that.

(a) Checks CFG_DSP or CFG_CACLOC in the configurator. As a result, the SR.DSP or
SR.CL bit when the task starts and kernel executes becomes 1.

(b) For all interrupt handlers and CPU exception handlers (including TRAPA), the DSP or
CL bit of the “Handler SR” which is specified at definition must be 1.

(c) Application program must not clear SR.DSP or SR.CL bit.

If these operations are not satisfied, SR.DSP or SR.CL may be cleared. It means that cache lock
state is canceled.

Section4 Application Program Creation

Rev.6.00 295
REJ10B0060-0600

4.2.3 VBR Register

The VBR register is initialized at kernel initiation. Application programs must not change the
VBR.

4.2.4 MMU (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A)

The kernel does not control the MMU.

4.2.5 Acceptance of NMI while SR.BL = 1 (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-
4A)

There are some microcomputers which can set up by the interrupt controller whether an NMI
which is generated in the state of SR.BL = 1 is accepted immediately or it is suspended until
clearing SR.BL. When it is made a setup detected immediately, returning to normal operation of
system after NMI interrupt handler is not guaranteed.

4.2.6 Nesting the Interrupts (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A)

When the interrupts are nested for 64 times or more including NMI, normal system operation
cannot be guaranteed. Make sure that no more than 64 interrupts are nested.

4.2.7 32-Bit Address Extension Mode (SH-4A)

When using 32-bit address extension mode, set up PMB so that behavior of P1 and P2 area
becomes the same as 29-bit address mode before kernel initiation.

4.2.8 TBR Register (SH-2A, SH2A-FPU)

How to use the TBR register is specified through CFG_TBR in the configurator.

(1) Kernel does not manage

The kernel does not manage TBR.

(2) Only for service call

The TBR is used only for service calls. Service calls are accelerated.

The TBR is initialized by the kernel. If TBR is modified by the application, correct system
operation cannot be guaranteed.

The TBR option and "#pragma tbr" of the compiler must not be used.

(3) Task context

Tasks can modify TBR. The initial value of TBR at task initiation is undefined.

The handlers other than tasks must guarantee the TBR value if the handlers modify TBR.

Section4 Application Program Creation

Rev.6.00 296
REJ10B0060-0600

4.2.9 Register Banks (SH-2A, SH2A-FPU)

The SH-2A and SH2A-FPU processors provide register banks to accelerate interrupt response.
How and whether the register banks are used is specifiable through the [Modification of
Interrupt Information] dialog box in the configurator.

(1) To use the register banks for all interrupts other than the NMI and UBC interrupts when the
target MCU is equipped with register banks

Select [Register bank is used except NMI and UBC (ALL)] for CFG_REGBANK and
specify the address of IBNR in [CFG_IBNR_ADR]. The kernel sets the IBNR value to
0x4000 during initialization (vsta_knel).

(2) To select whether or not to use the register banks for interrupts with specific interrupt levels
when the target MCU is equipped with register banks

Select [You select level to beused register bank (SELECT)] for CFG_REGBANK and select
the interrupt levels from CFG_BANKLVL01 to CFG_BANKLVL15 with which the register
banks are to be used. After that, specify the address of IBNR in [CFG_IBNR_ADR]. During
initialization (vsta_knel), the kernel initializes the the IBNR value to 0xC000 and the IBCR
value to a value that depends on the settings of CFG_BANKLVL01 to CFG_BANKLVL15.

(3) To select non-usage of the register banks although the target MCU is equipped with register
banks

Select [Register bank is not used (NOTUSE)] for CFG_REGBANK and specify the address
of IBNR in [CFG_IBNR_ADR]. The kernel initializes the IBNR value to 0 during
initialization (vsta_knel).

(4) When the target MCU does not have register banks

If you are using an MCU that does not have register banks (i.e., the processor is not an SH-
2A or SH2A-FPU), select [MCU has no register banks (NOBANK)] for CFG_REGBANK.

Note that the description method of interrupt handlers depends on the CFG_REGBANK setting.
For details, refer to section 4.8, Interrupt Handlers.

4.3 Using SH2A-FPU, SH-4, or SH-4A
Be sure to refer to Appendix G, Notes on FPU of SH2A-FPU, SH-4, SH4A even when FPU is
not used.

Section4 Application Program Creation

Rev.6.00 297
REJ10B0060-0600

4.4 System Reserve

4.4.1 Reserved Name

External definition names beginning with _kernel_, _KERNEL_, and hi_ are reserved for the
kernel, and cannot be used in application programs written in C language.

4.4.2 Reserved TRAP (Only in HI7000/4)

The TRAPA #25 and #26 instructions are used by the HI7000/4 kernel. Application programs
must not use these instructions.

4.5 Tasks

(1) Writing a Task in C Language

Figure 4.1 shows an example of writing a task as a function written in C language. For details,
refer to the sample file task.c.

Use an ext_tsk or exd_tsk system call to end a task. If the task is returned without issuing
ext_tsk or exd_tsk, ext_tsk is assumed to be issued and the same operation as when ext_tsk is
issued is performed.

#include "kernel.h"

#pragma noregsave(Task) ← #pragma noregsave can be used

 because the task function does not

 need to guarantee register

 contents.

void Task(VP_INT exinf) ← When a task is initiated by

 TA_ACT attribute or act_tsk, passes

 exinf specified at task creation as

 a parameter; when a task is

 initiated by sta_tsk, passes stacd

{ specified by sta_tsk as a parameter.

 /* task processing */

 ext_tsk(); ← Uses an ext_tsk or exd_tsk service

 call to end a task.

} ← Calls ext_tsk automatically

 at the end of a task function.

Figure 4.1 Example of a C Language Task

Section4 Application Program Creation

Rev.6.00 298
REJ10B0060-0600

(2) Rules on Using Registers

Tables 4.2 to 4.4 show rules on using registers for HI7000/4, HI7700/4, and HI7750/4.

Table 4.2 Rules on Using Registers in a Task (HI7000/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Task start address

2 SR √ *3 H'00000000

3 R0 to R3 √ Undefined

4 R4 √ [Activated by TA_ACT attribute or
act_tsk]

exinf which is specified at task creation

[Activated by sta_tsk]

stacd which is specified by sta_tsk

5 R5 to R14, MACH, MACL,
GBR

√ Undefined

6 R15 √ √ End address of stack area for the task

7 PR √ √ Undefined

8 [SH2-DSP] DSR *4 0 when attribute TA_COP0 is specified,
or undefined in other cases

9 [SH2-DSP] RS, RE, MOD,
A0, A0G, A1, A1G, M0, M1,
X0, X1, Y0, Y1

*4 Undefined

10 [SH-2A, SH2A-FPU] TBR *5 Undefined

11 [SH2A-FPU] FPSCR *6 H'00040001

12 [SH2A-FPU] FPUL,

FR0 to FR15

*6 Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. Except in the CPU-locked state, IMASK must be 0.
 4. Only when the TA_COP0 attribute is specified.

 5. Depends on CFG_TBR.
 (1) "Kernel does not manage": The kernel does not operate TBR.

 (2) "Only for service call": Do not modify TBR
 (3) "Task context": Usable

 6. Only when the TA_COP1 attribute is specified.

Section4 Application Program Creation

Rev.6.00 299
REJ10B0060-0600

Table 4.3 Rules on Using Registers in a Task (HI7700/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Task start address

2 SR √ *3 [Either CFG_DSP or CFG_CACLOC
is checked]

 H'40001000

[Neither CFG_DSP nor
CFG_CACLOC is checked]

 H'40000000

3 R0_BANK0 to R3_BANK0 √ Undefined

4 R4_BANK0 √ [Activated by TA_ACT attribute or
act_tsk]

exinf which is specified at task
creation

[Activated by sta_tsk]

stacd which is specified by sta_tsk

5 R5_BANK0 to R7_BANK0,
R8 to R14, MACH, MACL,
GBR

√ Undefined

6 R15 √ √ End address of stack area for the task

7 PR √ √ Undefined

8 [SH3-DSP, SH4AL-DSP]
DSR

*4 0 when attribute TA_COP0 is
specified, or undefined in other cases

9 [SH3-DSP, SH4AL-DSP]
RS, RE, MOD, A0, A0G, A1,
A1G, M0, M1, X0, X1, Y0,
Y1

*4 Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. DSP/CL must be 1 when at least one of CFG_DSP and CFG_CACLOC is checked.

 Except in the CPU-locked state, IMASK must be 0.
 MD = 1, BL = 0, and RB = 0 are required.
 4. Only when the TA_COP0 attribute is specified.

Section4 Application Program Creation

Rev.6.00 300
REJ10B0060-0600

Table 4.4 Rules on Using Registers in a Task (HI7750/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Task start address

2 SR √ *3 H'40000000

3 R0_BANK0 to R3_BANK0 √ Undefined

4 R4_BANK0 √ [Activated by TA_ACT attribute or
act_tsk]

exinf which is specified at task creation

[Activated by sta_tsk]

stacd which is specified by sta_tsk

5 R5_BANK0 to R7_BANK0,
R8 to R14, MACH, MACL,
GBR

√ Undefined

6 R15 √ √ End address of stack area for the task

7 PR √ √ Undefined

8 [SH-4, SH-4A] FPSCR √ H'00040001

9 [SH-4, SH-4A] FPUL *4 Undefined

10 [SH-4, SH-4A] FR0_BANK0
to FR15_BANK0

*5 Undefined

11 [SH-4, SH-4A] FR0_BANK1
to FR15_BANK1

*6 Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. Except in the CPU-locked state, IMASK must be 0.
 MD = 1, BL = 0, RB = 0, and FD = 0 are required.
 4. Only when at least one of the TA_COP1 and TA_COP2 attributes is specified.

 5. Only when the TA_COP1 attribute is specified.
 6. Only when the TA_COP2 attribute is specified.

Section4 Application Program Creation

Rev.6.00 301
REJ10B0060-0600

(3) Initial Contents of Task Management Information

Kernel management information is initialized when a task is initiated. The task management
information items and their initialized contents are shown in table 4.5.

Table 4.5 Initialized Contents of Task Management Information

Item Initialization Specification

Task base priority The initial task priority specified at the task definition (itskpri)

Task current priority The current task priority

Task wake-up request queues 0

Task suspend request nestings 0

Task event flag 0

Task exception processing Disabled

Suspended exception factor 0

Task execution mode 0

(4) Creating a Task

Tasks can be created in the following ways:

• Tasks that use a dynamic stack or a stack allocated by application:

⎯ cre_tsk, icre_tsk, acre_tsk, or iacre_tsk service call
⎯ Defined initially by the configurator

• Tasks that use a static stack:

⎯ vscr_tsk service call
⎯ Defined initially by the configurator

Section4 Application Program Creation

Rev.6.00 302
REJ10B0060-0600

4.6 Task Exception Processing Routines

(1) Writing a Task Exception Processing Routine

A task exception processing routine is normally written in C language, as shown in figure 4.2.

#includle "kernel.h"
#pragma noregsave (Texrtn) ← Since a task exception
 processing routine
 function does not need to
 guarantee the register,
 #pragma noregsave can be
 specified.

void Texrtn(TEXPTN texptn, VP_INT exinf) ←Passes exception factors
 and extended information
 as a parameter.

{

 /* Task exception processing routine */

 }

Figure 4.2 Example of a C Language Task Exception Processing Routine

(2) Rules on Using Registers

Tables 4.6 to 4.8 show rules on using registers for HI7000/4, HI7700/4, and HI7750/4.

Section4 Application Program Creation

Rev.6.00 303
REJ10B0060-0600

Table 4.6 Rules on Using Registers in a Task Exception Processing Routine
(HI7000/4)

No Registers
Use
*1

End
Conditions *2 Initial Value

1 PC √ Task exception processing routine start
address

2 SR √ *3 0

3 R0 to R3 √ Undefined

4 R4 √ Task exception pattern

5 R5 √ Extended information (exinf) of the task
exception processing routine

6 R6 to R14, MACH,
MACL, GBR

√ Undefined

7 R15 √ √ R15 points to the task's stack area.

8 PR √ √ Undefined

9 [SH2-DSP] DSR *4 0 when attribute TA_COP0 is specified,
or undefined in other cases

10 [SH2-DSP] RS, RE,
MOD, A0, A0G, A1,
A1G, M0, M1, X0, X1,
Y0, Y1

*4 Undefined

11 [SH-2A, SH2A-FPU]
TBR

*5 *5 *5

12 [SH2A-FPU] FPSCR *6 H'00040001

13 [SH2A-FPU] FPUL,

FR0 to FR15

*6 Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. Except in the CPU-locked state, IMASK must be 0.

 4. Only when the TA_COP0 attribute is specified.
 5. Depends on CFG_TBR.
 (1) "Kernel does not manage": The kernel does not operate TBR.

 (2) "Only for service call": Do not modify TBR
 (3) "Task context": When execution is returned from the task exception processing

routine entry function (RTS instruction), the contents of TBR must be the same as the
value at initiation. The initial value is the same as TBR of the task immediately before
the task exception processing routine is started.

 6. Only when the TA_COP1 attribute is specified.

Section4 Application Program Creation

Rev.6.00 304
REJ10B0060-0600

Table 4.7 Rules on Using Registers in a Task Exception Processing Routine
(HI7700/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Task exception processing routine
start address

2 SR √ *3 H'40001000 when either CFG_DSP or
CFG_CACLOC is selected, or
H'40000000 when neither of them is
selected

3 R0_BANK0 to R3_BANK0 √ Undefined

4 R4_BANK0 √ Task exception pattern

5 R5_BANK0 √ Extended information (exinf) of the
task exception processing routine

6 R6_BANK0, R7_BANK0, R8
to R14, MACH, MACL, GBR

√ Undefined

7 R15 √ √ R15 points to the task's stack area.

8 PR √ √ Undefined

9 [SH3-DSP, SH4AL-DSP]
DSR

*4 0 when attribute TA_COP0 is
specified, or undefined in other cases

10 [SH3-DSP, SH4AL-DSP]
RS, RE, MOD, A0, A0G, A1,
A1G, M0, M1, X0, X1, Y0,
Y1

*4 Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. DSP/CL must be 1 when at least one of CFG_DSP and CFG_CACLOC is checked.

 Except in the CPU-locked state, IMASK must be 0.
 MD = 1, BL = 0, and RB = 0 are required.
 4. Only when the TA_COP0 attribute is specified.

Section4 Application Program Creation

Rev.6.00 305
REJ10B0060-0600

Table 4.8 Rules on Using Registers in a Task Exception Processing Routine
(HI7750/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Task exception processing routine start
address

2 SR √ *3 H'40000000

3 R0_BANK0 to R3_BANK0 √ Undefined

4 R4_BANK0 √ Task exception pattern

5 R5_BANK0 √ Extended information (exinf) of the task
exception processing routine

6 R6_BANK0, R7_BANK0, R8
to R14, MACH, MACL, GBR

√ Undefined

7 R15 √ √ R15 points to the task's stack area.

8 PR √ √ Undefined

9 [SH-4, SH-4A] FPSCR √ H'00040001

10 [SH-4, SH-4A] FPUL *4 Undefined

11 [SH-4, SH-4A] FR0_BANK0
to FR15_BANK0

*5 Undefined

12 [SH-4, SH-4A] FR0_BANK1
to FR15_BANK1

*6 Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. Except in the CPU-locked state, IMASK must be 0.

 MD = 1, BL = 0, RB = 0, and FD = 0 are required.
 4. Only when at least one of the TA_COP1 and TA_COP2 attributes is specified.

 5. Only when the TA_COP1 attribute is specified.
 6. Only when the TA_COP2 attribute is specified.

(3) Defining a Task Exception Processing Routine

A task exception processing routine can be defined in the following ways:

• def_tex or idef_tex service call

• Defined initially by the configurator

Section4 Application Program Creation

Rev.6.00 306
REJ10B0060-0600

4.7 Extended Service Call Routines

(1) Writing an Extended Service Call Routine

An extended service call routine is normally written in C language, as shown in figure 4.3.

#include "kernel.h"
ER_UINT Svcrtn(VP_INT par1,VP_INT par2) ←Parameters specified by
 cal_svc are passed to the
 extended service call
 routine.

{

 /* Extended service call routine */

 return E_OK; ←Passes the return value
 } to the caller

Figure 4.3 Example of a C Language Extended Service Call Routine

(2) Rules on Using Registers in Extended Service Call Routine

An extended service call routine is called by issuing the cal_svc or ical_svc service call in the
same way as a normal function call. Therefore, an extended service call routine can use registers
in the same way as normal C language functions. For details, refer to SuperH™ RISC engine
C/C++ Compiler User's Manual.

Parameters 1 to 4 specified by cal_svc are stored in the R4 to R7 registers. Note that the task
issuing cal_svc or ical_svc determines whether or not the DSP and FPU registers can be used in
an extended service call routine.

(3) Defining an Extended Service Call Routine

An extended service call routine can be defined in the following ways:

• def_svc or idef_svc service call

• Defined initially by the configurator

Section4 Application Program Creation

Rev.6.00 307
REJ10B0060-0600

4.8 Interrupt Handlers
There are two types of interrupt handlers. One is "Normal interrupt handler", and another is
"Direct interrupt handler" for HI7000/4. The interrupt response of the direct interrupt handler is
better than the normal interrupt handler.

4.8.1 Normal Interrupt Handler

A normal interrupt handler is initiated via the entrance and exit processing routine of the kernel
when an interrupt occurs.

When the HI7000/4 is used, the interrupts with a level higher than the kernel interrupt mask
level (CFG_KNLMSKLVL) must be written and defined as the direct interrupt handler
(including NMI). If these handlers are written and defined as the normal interrupt handler,
normal system operation cannot be guaranteed.

(1) Writing a Normal Interrupt Handler

A normal interrupt handler is written in C language, as shown in figure 4.4.

#include "kernel.h"

#pragma noregsave(Inh) ←When SH-2A or SH2A-FPU is used and

 CFG_REGBANK is checked, this statement

 can be used because the handler does

 not have to guarantee general registers.

void Inh(void) ←An interrupt handler is defined as void.
{

 /* Interrupt handler processing */

}

Figure 4.4 Example of a C Language Normal Interrupt Handler

(2) Rules on Using Registers in a Normal Interrupt Handler

Tables 4.9 to 4.11 show rules on using registers for HI7000/4, HI7700/4, and HI7750/4.

Section4 Application Program Creation

Rev.6.00 308
REJ10B0060-0600

Table 4.9 Rules on Using Registers in a Normal Interrupt Handler (HI7000/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Interrupt handler start address

2 SR √ *3 IMASK: Interrupt level

Other bits: Same as before interrupt.

3 R0 to R7 √ Undefined

4 R8 to R14, MACH, MACL,
GBR

√ √ *4 Undefined

5 R15 √ √ R15 points to the interrupt handler
stack area.

The kernel changes the stack pointer to
the interrupt handler stack area at
interrupt. All interrupt handlers use the
same stack area.

The size of the interrupt handler stack
area is defined by CFG_IRQSTKSZ.
Note that the size of the interrupt
handler stack must be calculated
carefully considering interrupt nestings.
For details, refer to appendix C.7,
Interrupt Handler Stacks.

6 PR √ √ Undefined

7 [SH2-DSP] DSR, RS, RE,
MOD, A0, A0G, A1, A1G,
M0, M1, X0, X1, Y0, Y1

√ √ Undefined

8 [SH-2A, SH2A-FPU] TBR *5 *5 *5

9 [SH2A-FPU] FPSCR √ √ Undefined

10 [SH2A-FPU]

FR0 to FR11

√ √ Undefined

11 [SH2A-FPU] FPUL,

FR12 to FR15

√ √ Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2 When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3 IMASK bits must not be lower than the current interrupt level.

 4 When the SH-2A or SH2A-FPU is used and CFG_REGBANK is selected, the end
condition is not required.

 5 Depends on CFG_TBR.
 (1) "Kernel does not manage": The kernel does not operate TBR.
 (2) "Only for service call": Do not modify TBR

Section4 Application Program Creation

Rev.6.00 309
REJ10B0060-0600

 (3) "Task context": When execution is returned from an interrupt handler function
(RTS instruction), the contents of TBR must be the same as the value at initiation.
The initial value is undefined.

Table 4.10 Rules on Using Registers in a Normal Interrupt Handler (HI7700/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Interrupt handler start address

2 SR √ *3 The value which is specified at the
definition.

3 R0_BANK0 to R7_BANK0 √ Undefined

4 R8 to R14, MACH, MACL,
GBR

√ √ Undefined

5 R15 √ √ R15 points to the interrupt handler
stack area.

The kernel changes the stack pointer to
the interrupt handler stack area at
interrupt. All interrupt handlers use the
same stack area.

The size of the interrupt handler stack
area is defined by CFG_IRQSTKSZ.
Note that the size of the interrupt
handler stack must be calculated
carefully considering interrupt nestings.
For details, refer to appendix C.7,
Interrupt Handler Stacks.

6 PR √ √ Undefined

7 [SH3-DSP, SH4AL-DSP]
DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0,
X1, Y0, Y1

√ √ Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. IMASK bits must not be lower than the current interrupt level.

 DSP/CL must be 1 when at least one of CFG_DSP and CFG_CACLOC is checked.
 MD must be 1.

Section4 Application Program Creation

Rev.6.00 310
REJ10B0060-0600

Table 4.11 Rules on Using Registers in a Normal Interrupt Handler (HI7750/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Interrupt handler start address

2 SR √ *3 The value which is specified at the
definition.

3 R0_BANK0 to R7_BANK0 √ Undefined

4 R8 to R14, MACH, MACL,
GBR

√ √ Undefined

5 R15 √ √ R15 points to the interrupt handler
stack area.

The kernel changes the stack pointer to
the interrupt handler stack area at
interrupt. All interrupt handlers use the
same stack area.

The size of the interrupt handler stack
area is defined by CFG_IRQSTKSZ.
Note that the size of the interrupt
handler stack must be calculated
carefully considering interrupt nestings.
For details, refer to appendix C.7,
Interrupt Handler Stacks.

6 PR √ √ Undefined

7 [SH-4, SH-4A] FPSCR √ Undefined

8 [SH-4, SH-4A] FPUL √ √ Undefined

9 [SH-4, SH-4A] FR0_BANK0
to FR15_BANK0

√ √ Undefined

10 [SH-4, SH-4A] FR0_BANK1
to FR15_BANK1

√ √ Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. IMASK bits must not be lower than the current interrupt level.

 MD must be 1. FD must be 0.

(3) Writing a Normal Interrupt Handler in C Language Using the DSP

To use the DSP in an interrupt handler, refer to section 4.13, Using the DSP in Programs (for
HI7000/4 and HI7700/4 only).

Section4 Application Program Creation

Rev.6.00 311
REJ10B0060-0600

(4) Using the IRL Interrupt

In an IRL interrupt, two different interrupt causes are assigned to one vector. When using both
of these causes, the normal interrupt handler must be modified, as shown in figure 4.5.

#include "kernel.h"

#define I_HILEVEL15 ←Higher level

void vec071_handler14(void) ←Executes IRL14 processing.

{

 /* IRL14 interrupt processing */

}

void vec071_handler15(void) ←Executes IRL15 processing.

{

 /* IRL14 interrupt processing */

}

}

void vec071(void) ←Defines vec071() as a

{ normal interrupt handler

 if ((get_imask()) == I_HILEVEL)

 vec071_handler15();

 else

 vec071_handler14();

}

Figure 4.5 Example of a C Language Interrupt Handler Using IRL Interrupt

(5) Defining a Normal Interrupt Handler

A normal interrupt handler can be defined in the following ways:

• def_inh or idef_inh service call

• Defined initially by the configurator

Section4 Application Program Creation

Rev.6.00 312
REJ10B0060-0600

(6) Notes on the NMI (HI7700/4, HI7750/4)

NMI re-entry can be allowed or not allowed in the following ways:

• To not allow the NMI re-entry
The BL bit of the SR must be set to 1 at the initiation of the handler, which is specified when
the NMI interrupt handler is defined, and must not be cleared by the NMI interrupt handler.
Since the NMI interrupt handler is executed while the BL bit of SR is 1, the exception of the
handler (including TLB miss) must not occur.

• To allow the NMI re-entry
The BL bit of the SR must be cleared to 0 at the initiation of the handler, which is specified
when the NMI interrupt is defined, and the BL bit can be cleared by the NMI interrupt. Note,
however, that since re-entry of NMI occurs in this case, a larger stack size is required
compared to that when the NMI re-entry is not allowed.

4.8.2 Direct Interrupt Handler (HI7000/4)

A direct interrupt handler supported by HI7000/4 is initiated by the CPU without kernel
intervention when an interrupt occurs. In addition, interrupt handlers with interrupt levels higher
than the kernel interrupt mask level (CFG_KNLMSKLVL) must be written and defined as direct
interrupt handlers (including NMI). If these interrupts are written and defined as the normal
interrupt handlers, normal system operation cannot be guaranteed.

Note that HI7700/4 and HI7750/4 do not support direct interrupt handlers.

(1) Writing a Direct Interrupt Handler

A direct interrupt handler is written in C language, as shown in figure 4.6.

#include "kernel.h"

#define stksz 512 (1)

VW stk[stksz / sizeof(VW)];

static const VP p_stk=(VP)&stk[stksz/sizeof(VW)]; (2)

#pragma interrupt(DirectInh(sp=p_stk,tn=25)) (3)

void DirectInh(void) (4)

{

 /* Interrupt handler processing */

}

Figure 4.6 Example of a C Language Direct Interrupt Handler

Section4 Application Program Creation

Rev.6.00 313
REJ10B0060-0600

Descriptions of Figure 4.6:

(1) Allocate a stack area for the interrupt handler.

The handler except NMI must switch stacks in order to avoid overflow of the interrupted
program's stack. Interrupt handlers of the same interrupt level can share a stack. Note,
however, that NMI interrupt handler cannot use its dedicated stack.

(2) Initial stack pointer defined as const

(3) The interrupt handler function is declared as an interrupt function by using #pragma interrupt
statement. Specify the following items,

 (a) "sp=" (Switching stack)

 Specify the variable defined in (2) when the stack is switched.

 (b) "tn=" (Return by TRAPA)

 For interrupt handlers with priority levels equal to or lower than the kernel interrupt mask
level (CFG_KNLMSKLVL), "tn=" must be specified. For details, see table 4.12.

 (c) "resbank" (Restore bank register)

 When the SH-2A or SH2A-FPU is in use and register banks are used with interrupts,
"resbank" must be specified. For details, see table 4.12.

(4) Write the interrupt handler as a void-type function.

Section4 Application Program Creation

Rev.6.00 314
REJ10B0060-0600

Table 4.12 "tn=" and "resbank" (HI7000/4)

CFG_REGBANK

Usage of
Register
Banks Interrupt Level "tn=" "resbank"

Higher than
CFG_KNLMSKLVL

None NOBANK or
NOTUSE

⎯

Equal to or lower than
CFG_KNLMSKLVL

"tn=25" or
"tn=26"*2

None

Higher than
CFG_KNLMSKLVL

None Interrupt
sources
with which
register
banks are
used*1

Equal to or lower than
CFG_KNLMSKLVL

"tn=26"

None

Higher than
CFG_KNLMSKLVL

None

ALL or SELECT

Interrupt
sources
with which
register
banks are
not used*1

Equal to or lower than
CFG_KNLMSKLVL

"tn=25"

"resbank"

Notes: 1. Register banks are never used with the NMI and UBC interrupts. Register banks are
used with all other interrupt sources when [ALL] has been selected for
CFG_REGBANK. When [SELECT] has been selected for CFG_REGBANK, register
banks are only used with those sources having interrupt levels for which the
corresponding CFG_BANKLVL?? has been selected. Otherwise, register banks are
not used with interrupt sources for which this is not the case.

 2. The operation is the same in both cases.

Section4 Application Program Creation

Rev.6.00 315
REJ10B0060-0600

(2) Rules for Using Registers in a Direct Interrupt Handler

Table 4.13 shows rules on using registers in a direct interrupt handler, and figure 4.7 shows an
example of a direct interrupt handler written in assembly language.

Table 4.13 Rules for Using Registers in a Direct Interrupt Handler (HI7000/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Interrupt handler start address

2 SR √ *3 IMASK: Interrupt level

Other bits: Same as before interrupt

3 R0 to R14, MACH,
MACL, GBR

√ √ *4 Undefined

4 R15 √ √ R15 points to the stack area for the interrupted
program.

[Interrupts other than NMI]

When an interrupt occurs, the stack used by
the task prior to an interrupt must be switched
to the interrupt handler-specific stack to avoid
task stack overflow. Otherwise, the task stack
may overflow. Direct interrupt handlers of the
same interrupt level can share that stack since
such interrupt handlers do not use the stack
simultaneously. When the stack is shared by
direct interrupt handlers of the same interrupt
level, the stack size must be defined
considering the largest stack size used among
the direct interrupt handlers. The direct
interrupt handler can use 4 bytes of stack
used by the previous task.

[In case of NMI]

Since the NMI interrupt handler has the
possibility to re-enter, the stack must not be
switched. Since the NMI interrupt handler
uses the stack at the point of the NMI
occurrence, the stack size to be used by the
NMI interrupt handler must be added to the
stacks for the tasks and the interrupt handler

5 PR √ √ *4 Undefined

6 [SH2-DSP] DSR, RS,
RE, MOD, A0, A0G,
A1, A1G, M0, M1,
X0, X1, Y0, Y1

√ √ Undefined

Section4 Application Program Creation

Rev.6.00 316
REJ10B0060-0600

Table 4.13 Rules for Using Registers in a Direct Interrupt Handler (cont)

No Registers
Use
*1

End
Conditions
*2 Initial Value

7 [SH-2A, SH2A-FPU]
TBR

*5 *5 *5

8 [SH2A-FPU] FPSCR,
FPUL、FR0 to FR15

√ √ Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTE or TRAPA instruction), the
contents of these registers must be the same as the value at initiation.

 3. IMASK bits must not be lower than the current interrupt level.

 4. In the case of the SH-2A or SH2A-FPU processors, the end condition is not
necessary when register banks are used with interrupts.

 5. Depends on CFG_TBR.
 (1) "Kernel does not manage": The kernel does not operate TBR.
 (2) "Only for service call": Do not modify TBR.

 (3) "Task context": When execution is returned from an interrupt handler function
(RTS instruction), the contents of TBR must be the same as the value at initiation.
The initial value is undefined.

Section4 Application Program Creation

Rev.6.00 317
REJ10B0060-0600

 .INCLUDE “kernel.inc”

 .SECTION B_hiirqstk, DATA, ALIGN=4 ←Defines the stack used by

 .RES.L 128 the interrupt handler.

_Stk: ←Assigns symbol _Stk to the

 .SECTION P_ISR, CODE, ALIGN=4 end address of the stack.

 .EXPORT _DirectInh

_DirectInh: ←Start address of the

 interrupt handler.

 MOV.L R0,@-R15 ←Saves the contents of R0 to

 the stack of the program

 that was interrupted.

 MOV.L #_Stk,R0 ←Saves the address pointed

 to by the stack pointer

 to the stack used by the

 interrupt handler.

 MOV.L R15,@-R0

 MOV.L R0,R15 ←Switches the stack pointer

 to the interrupt handler

 stack.

 MOV.L R1,@-R15 ←Saves the contents of

 registers (including the

 DSP) used by the handler

 to stack.

;

; Interrupt handler process

; ←Restores the register

 contents after completing

 handler execution.

 MOV.L @R15+,R1

 MOV.L @R15+,R15 ←Restores the address

 pointed to by the stack

 pointer.

 MOV.L @R15+,R0 ←Restores the contents of

 R0.

 <End instruction> ← See table 4.14.

 .POOL

 .END

Figure 4.7 Example of an Assembly Language Direct Interrupt Handler

Section4 Application Program Creation

Rev.6.00 318
REJ10B0060-0600

Table 4.14 End Instructions for Direct Interrupt Handlers (HI7000/4)

CFG_REGBANK
Use of Register
Banks Interrupt Level End Instruction

Higher than
CFG_KNLMSKLVL

RTE NOBANK or
NOTUSE

⎯

Equal to or lower than
CFG_KNLMSKLVL

TRAPA #D’25 or TRAPA
#D’26*2

Higher than
CFG_KNLMSKLVL

None Interrupt sources
with which
register banks
are used*1 Equal to or lower than

CFG_KNLMSKLVL
TRAPA #D’26

Higher than
CFG_KNLMSKLVL

RESBANK

RTE*3

ALL or SELECT

Interrupt sources
with which
register banks
are not used*1 Equal to or lower than

CFG_KNLMSKLVL
TRAPA #D’25

Notes: 1. Register banks are never used with the NMI and UBC interrupts. Register banks are
used with all other interrupt sources when [ALL] has been selected for
CFG_REGBANK. When [SELECT] has been selected for CFG_REGBANK, register
banks are only used with those sources having interrupt levels for which the
corresponding CFG_BANKLVL?? has been selected. Otherwise, register banks are
not used with interrupt sources for which this is not the case.

 2. The operation is the same in both cases.

 3. Both instructions must be included, in the order given above.

(3) Writing a Direct Interrupt Handler Using the DSP

To use the DSP in a direct interrupt handler, refer to section 4.13, Using the DSP in Programs
(for HI7000/4 and HI7700/4 only).

(4) Defining a Direct Interrupt Handler

A direct interrupt handler can be defined in either of the following ways.

• By making a def_inh or idef_inh service call

• By specification in the configurator

Section4 Application Program Creation

Rev.6.00 319
REJ10B0060-0600

(5) Using the IRL Interrupt

In an IRL interrupt, two different interrupt causes are assigned to one vector. When using both
of these causes, the direct interrupt handler must be modified as shown in figure 4.8.

• Creating an interrupt handler in C language

Create the main process as a normal C function, as shown in figure 4.8. In assembly
language, create the interface routine, which calls the C function when an interrupt occurs, as
shown in figure 4.9. When defining interrupt handlers by the configurator, specify the
interface routine address as the interrupt handler address.

Section4 Application Program Creation

Rev.6.00 320
REJ10B0060-0600

#include "kernel.h"

void vec071_handler14(void) ←Describes the program as a

 usual void-type function.

{

 /* IRL14 interrupt processing */

}

void vec071_handler15(void) ←Describes the program as a

 usual void-type function.

{

 /* IRL15 interrupt processing */

}

Figure 4.8 Example of a C Language IRL Direct Interrupt Handler Main Processing
Routine

 .EXPORT _Vec071 ←Externally defines the

 interface routine.

 .IMPORT _Vec071_Handler14 ←Externally references the

 IRL14 interrupt handler

 main function.

 .IMPORT _Vec071_Handler15 ←Externally references the

 IRL15 interrupt handler

 main function.

 .SECTION B_hiirqstk,DATA,ALIGN=4

 .RES.L 128 ←Defines the interrupt

 handler stack for IRL15.

_Stk15: ←Assigns symbol _Stk15 to

 the end address of the IRL15

 stack.

 .RES.L 128 ←Defines the interrupt

 handler stack for IRL14.

_Stk14: ←Assigns symbol _Stk14 to

 the end address of the IRL14

 stack.

Figure 4.9 Example of an Assembly Language IRL Direct Interrupt Handler Interface
Routine

Section4 Application Program Creation

Rev.6.00 321
REJ10B0060-0600

 .SECTION P_ISR,CODE,ALIGN=4

I_HILEVEL .equ H'F0>>1 ←(SR bit location of high

 level)>>1

I_BITMASK .equ H'F0 ←Defines bit mask of SR.I

 field.

_Vec071: ←Interface routine.

 MOV.L R0,@-R15 ←Saves the contents of R0 to

 the stack of the program

 that was interrupted.

 STC SR,R0 ←Checks the level of the

 AND #I_BITMASK,R0 interrupt and determines

 SHLR R0 which stack to switch to

 CMP/EQ #I_HILEVEL,R0 and the address for the

 BF IRL14 main process.

IRL15: ←Process for IRL15

 MOV.L #_Stk15,R0 ←Saves the address pointed

 MOV.L R15,@-R0 to by the stack pointer to

 the stack of IRL15.

 MOV R0,R15 ←Switches from the stack

 pointer to the stack for

 IRL15.

 MOV.L #_Vec071_Handler15,R0 ←Sets the address of IRL15

 main process to R0.

CONTINUE:

 MOV.L R1,@-R15 ←Saves the contents of the

 MOV.L R2,@-R15 registers used by the main

 MOV.L R3,@-R15 process according to the C

 MOV.L R4,@-R15 language function calling

 MOV.L R5,@-R15 rules. When the handler

 STS.L PR,@-R15 uses the DSP, the

 MOV.L R6,@-R15 contents of the DSP

 STS.L MACL,@-R15 registers must be saved.

 MOV.L R7,@-R15

 STS.L MACH,@-R15

 JSR @R0 ←Calls the main process.

 NOP

 LDS.L @R15+,MACH ←Restores the contents of

 MOV.L @R15+,R7 the registers.

Figure 4.9 Example of an Assembly Language IRL Direct Interrupt Handler
Interface Routine (cont)

Section4 Application Program Creation

Rev.6.00 322
REJ10B0060-0600

 LDS.L @R15+,MACH

 MOV.L @R15+,R6

 LDS.L @R15+,PR

 MOV.L @R15+,R5

 MOV.L @R15+,R4

 MOV.L @R15+,R3

 MOV.L @R15+,R2

 MOV.L @R15+,R1

 MOV.L @R15+,R15 ←Restores the address

 pointed to by the stack

 pointer.

 MOV.L @R15+,R0 ←Restores the contents of

 R0.

 TRAPA #D'25 ←An interrupt handler with a

 level equal to or lower

 than the kernel interrupt

 mask level completes

 execution with TRAPA #25.

; RTE ←An interrupt handler with a

; NOP level higher than the

 kernel interrupt mask level

 completes execution with

 RTE.

IRL14: ←Process for IRL14.

 MOV.L #_Stk14,R0 ←Saves the address pointed

 to by the stack pointer to

 the stack of IRL14.

 MOV.L R15,@-R0

 MOV R0,R15 ←Switches from the stack

 pointer to the stack for

 IRL14.

 BRA CONTINUE

 MOV.L #_Vec071_Handler14,R0 ←Sets the address of IRL14

 main process to R0.

 .POOL

 .END

Figure 4.9 Example of an Assembly Language IRL Direct Interrupt Handler
Interface Routine (cont)

• Creating an interrupt handler in assembly language

Refer to the above example, write a handler that performs the necessary processes after
switching to the appropriate stack for the interrupt level, and then switches back to the
original stack.

Section4 Application Program Creation

Rev.6.00 323
REJ10B0060-0600

4.9 CPU Exception Handler (Including TRAPA Instruction Exception)
If an exception occurs, a CPU exception handler is initiated via the entrance and exit process of
the kernel.

(1) Writing a CPU Exception Handler

A CPU exception handler (including the TRAPA instruction exception) can be defined in the
same way as normal interrupt handlers. For details, refer to section 4.8.1, Normal Interrupt
Handler.

Section4 Application Program Creation

Rev.6.00 324
REJ10B0060-0600

(2) Rules for Using Registers in a CPU Exception Handler

Tables 4.15 to 4.17 show rules on using registers for HI7000/4, HI7700/4, and HI7750/4.

Table 4.15 Rules on Using Registers in a CPU Exception Handler (HI7000/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ CPU exception handler start address

2 SR √ Same as before CPU exception.

3 R0 to R7 √ Undefined

4 R8 to R14, MACH, MACL,
GBR

√ √ Same as before CPU exception.

5 R15 √ √ R15 points to the stack area for the
program which generates exception.

As a CPU exception handler may re-
enter, the CPU exception handler uses
the stack used by the previous
program. A CPU exception handler
does not use its own stack.

6 PR √ √ Undefined

7 [SH2-DSP] DSR, RS, RE,
MOD, A0, A0G, A1, A1G,
M0, M1, X0, X1, Y0, Y1

√ √ Same as before CPU exception.

8 [SH-2A, SH2A-FPU] TBR *3 *3 *3

9 [SH2A-FPU] FPSCR √ √ Same as before CPU exception.

10 [SH2A-FPU]

FR0 to FR11

√ √ Same as before CPU exception.

11 [SH2A-FPU] FPUL,

FR12 to FR15

√ √ Same as before CPU exception.

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. Depends on CFG_TBR.

 (1) "Kernel does not manage": The kernel does not operate TBR.
 (2) "Only for service call": Do not modify TBR
 (3) "Task context": When execution is returned from an interrupt handler function

(RTS instruction), the contents of TBR must be the same as the value at initiation.
The initial value is the same as before CPU exception.

Section4 Application Program Creation

Rev.6.00 325
REJ10B0060-0600

Table 4.16 Rules on Using Registers in a CPU Exception Handler (HI7700/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ CPU exception handler start address

2 SR √ *3 IMASK bits: Same as before exception

Other bits: The value which is specified
at the definition.

3 R0_BANK0 to R7_BANK0 √ Undefined

4 R8 to R14, MACH, MACL,
GBR

√ √ Same as before CPU exception.

5 R15 √ √ R15 points to the stack area for the
program which generates exception.

As a CPU exception handler may re-
enter, the CPU exception handler uses
the stack used by the previous
program. A CPU exception handler
does not use its own stack.

6 PR √ √ Undefined

7 [SH3-DSP, SH4AL-DSP]
DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1, X0,
X1, Y0, Y1

√ √ Same as before CPU exception.

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. DSP/CL must be 1 when at least one of CFG_DSP and CFG_CACLOC is checked.
 MD must be 1.

Section4 Application Program Creation

Rev.6.00 326
REJ10B0060-0600

Table 4.17 Rules on Using Registers in a CPU Exception Handler (HI7750/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ CPU exception handler start address

2 SR √ *3 IMASK bits: Same as before exception

Other bits: The value which is specified
at the definition.

3 R0_BANK0 to R7_BANK0 √ Undefined

4 R8 to R14, MACH, MACL,
GBR

√ √ Same as before CPU exception.

5 R15 √ √ R15 points to the stack area for the
program which generates exception.

As a CPU exception handler may re-
enter, the CPU exception handler uses
the stack used by the previous
program. A CPU exception handler
does not use its own stack.

6 PR √ √ Undefined

7 [SH-4, SH-4A] FPSCR √ Same as before CPU exception.

8 [SH-4, SH-4A] FPUL √ √ Same as before CPU exception.

9 [SH-4, SH-4A] FR0_BANK0
to FR15_BANK0

√ √ Same as before CPU exception.

10 [SH-4, SH-4A] FR0_BANK1
to FR15_BANK1

√ √ Same as before CPU exception.

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. MD must be 1. FD must be 0.

Section4 Application Program Creation

Rev.6.00 327
REJ10B0060-0600

(3) Contents of Stack at Initiation

When a CPU exception occurs, the kernel saves the register contents in the stack. When
execution is returned from a CPU exception handler, the kernel restores these register contents
from the stack.

(a) HI7000/4

Stack pointer (R15) -> R7 at CPU exception 0

 R6 at CPU exception +4

 R5 at CPU exception +8

 R4 at CPU exception +12

 R3 at CPU exception +16

 R2 at CPU exception +20

 R1 at CPU exception +24

 R0 at CPU exception +28

 PR at CPU exception +32

 PC at CPU exception +36

 SR at CPU exception +40

Stack pointer before ->

CPU exception

Stack before CPU exception +44

(b) HI7700/4

Stack pointer (R15) -> R7_BANK0 at CPU exception 0

 R6_BANK0 at CPU exception +4

 R5_BANK0 at CPU exception +8

 R4_BANK0 at CPU exception +12

 R3_BANK0 at CPU exception +16

 R2_BANK0 at CPU exception +20

 R1_BANK0 at CPU exception +24

 R0_BANK0 at CPU exception +28

 PR at CPU exception +32

 PC (SPC) at CPU exception +36

 SR (SSR) at CPU exception +40

Stack pointer before -->

CPU exception

Stack before CPU exception +44

Section4 Application Program Creation

Rev.6.00 328
REJ10B0060-0600

(c) HI7750/4

Stack pointer (R15) -> R7_BANK0 at CPU exception 0

 R6_BANK0 at CPU exception +4

 R5_BANK0 at CPU exception +8

 R4_BANK0 at CPU exception +12

 R3_BANK0 at CPU exception +16

 R2_BANK0 at CPU exception +20

 R1_BANK0 at CPU exception +24

 R0_BANK0 at CPU exception +28

 PR at CPU exception +32

 FPSCR at CPU exception +36

 PC (SPC) at CPU exception +40

 SR (SSR) at CPU exception +44

Stack pointer before -->

CPU exception

Stack before CPU exception +48

(4) Writing a CPU Exception Handler in C Language Using the DSP

To use the DSP in a CPU exception handler, refer to section 4.13, Using the DSP in Programs
(for HI7000/4 and HI7700/4 only).

(5) Defining a CPU Exception Handler

A CPU exception handler can be defined in the following ways:

• def_exc or idef_exc service call (CPU exception handlers other than TRAPA)

• vdef_trp or ivdef_trp service call (CPU exception handlers caused by TRAPA)

• Defined initially by the configurator

Section4 Application Program Creation

Rev.6.00 329
REJ10B0060-0600

4.10 Time Event Handlers and Initialization Routine

(1) Writing Time Event Handlers and Initialization Routine

Time event handlers and initialization routine can be defined as regular C language functions.
Figure 4.10 shows an example of a cyclic handler, an alarm handler, and an initialization
routine. Figure 4.11 shows an example of an overrun handler written in C language.

These handlers are executed in non-task context.

#include "kernel.h"

void Handler(VP_INT exinf) ←Passes exinf specified at definition

 as a parameter

{

 /* Handler processing */

}

Figure 4.10 Example of a C Language Cyclic Handler, Alarm Handler, and
Initialization Routine

#include "kernel.h"

void Overhdr (ID tskid, VP_INT exinf) ←Passes tskid indicating the

 initiation factor and exinf

 for the task

{

 /* Handler processing */

}

Figure 4.11 Example of a C Language Overrun Handler

(2) Rules for Using Registers in Time Event Handlers and Initialization Routine

Tables 4.18 to 4.20 show rules on using registers for HI7000/4, HI7700/4, and HI7750/4.

Section4 Application Program Creation

Rev.6.00 330
REJ10B0060-0600

Table 4.18 Rules for Using Registers in Time Event Handler and Initialization Routine
(HI7000/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ Handler/Routine start address

2 SR √ *3 IMASK:

 Time event handler

 Timer interrupt level (CFG_TIMINTLVL)

 Initialization routine

 Kernel interrupt mask level

 (CFG_KNLMSKLVL)

Other bits: Undefined.

3 R0 to R3 √ Undefined

4 R4 √ [Cyclic/Alarm handler, Initialization routine]

 Extended information (exinf)

[Overrun handler]

 Target task ID

5 R5 √ [Cyclic/Alarm handler, Initialization routine]

 Undefined

[Overrun handler]

 Extended information (exinf) for the task

6 R6 to R7 √ Undefined

7 R8 to R14, MACH,
MACL, GBR

√ √ Undefined.

8 R15 √ √ R15 points to appropriate stack area.

9 PR √ √ Undefined

10 [SH2-DSP] DSR, RS,
RE, MOD, A0, A0G,
A1, A1G, M0, M1, X0,
X1, Y0, Y1

√ √ Undefined

11 [SH-2A, SH2A-FPU]
TBR

*4 *4 *4

12 [SH2A-FPU] FPSCR √ √ Undefined

13 [SH2A-FPU]

FR0 to FR11

√ √ Undefined

14 [SH2A-FPU] FPUL,

FR12 to FR15

√ √ Undefined

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

Section4 Application Program Creation

Rev.6.00 331
REJ10B0060-0600

 3. IMASK bits must not be lower than the value at initiation. And IMASK bits must be the
same as initial value when execution is returned from the handler

 4. Depends on CFG_TBR.
 (1) "Kernel does not manage": The kernel does not operate TBR.

 (2) "Only for service call": Do not modify TBR
 (3) "Task context": When execution is returned from an interrupt handler function

(RTS instruction), the contents of TBR must be the same as the value at initiation.
The initial value is undefined.

Table 4.19 Rules for Using Registers in Time Event Handler and Initialization Routine
(HI7700/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ CPU exception handler start address

2 SR √ *3 IMASK bits: Same as before exception

MD = 1, BL = 0, RB = 0

DSP/CL: When at least one of CFG_DSP
and CFG_CACLOC is checked. DSP/CL
is 1, otherwise DSP/CL is 0.

Other bits: Undefined

3 R0 to R3 √ Undefined

4 R4 √ [Cyclic/Alarm handler, Initialization
routine]

 Extended information (exinf)

[Overrun handler]

 Target task ID

5 R5 √ [Cyclic/Alarm handler, Initialization
routine]

 Undefined

[Overrun handler]

 Extended information (exinf) for the task

6 R6 to R7 √ Undefined

7 R8 to R14, MACH,
MACL, GBR

√ √ Undefined.

8 R15 √ √ R15 points to appropriate stack area.

9 PR √ √ Undefined

10 [SH3-DSP, SH4AL-DSP]
DSR, RS, RE, MOD, A0,
A0G, A1, A1G, M0, M1,
X0, X1, Y0, Y1

√ √ Undefined

Section4 Application Program Creation

Rev.6.00 332
REJ10B0060-0600

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. IMASK bits must not be lower than the value at initiation. And IMASK bits must be the
same as initial value when execution is returned from the handler.

 DSP/CL must be 1 when at least one of CFG_DSP and CFG_CACLOC is checked.
 MD = 1, BL = 0, and RB = 0 are required.

Section4 Application Program Creation

Rev.6.00 333
REJ10B0060-0600

Table 4.20 Rules for Using Registers in Time Event Handlers and Initialization
Routine (HI7750/4)

No Registers
Use
*1

End
Conditions
*2 Initial Value

1 PC √ CPU exception handler start address

2 SR √ *3 IMASK bits: Same as before exception

MD = 1, BL = 0, RB = 0, FD = 0

Other bits: Undefined

3 R0 to R3 √ Undefined

4 R4 √ [Cyclic/Alarm handler, Initialization
routine]

 Extended information (exinf)

[Overrun handler]

 Target task ID

5 R5 √ [Cyclic/Alarm handler, Initialization
routine]

 Undefined

[Overrun handler]

 Extended information (exinf) for the task

6 R6 to R7 √ Undefined

7 R8 to R14, MACH,
MACL, GBR

√ √ Undefined.

8 R15 √ √ R15 points to appropriate stack area.

9 PR √ √ Undefined

9 [SH-4, SH-4A] FPSCR √ Undefined

10 [SH-4, SH-4A] FPUL √ √ Undefined

11 [SH-4, SH-4A]
FR0_BANK0 to
FR15_BANK0

√ √ Undefined

12 [SH-4, SH-4A]
FR0_BANK1 to
FR15_BANK1

√ √ Undefined

Section4 Application Program Creation

Rev.6.00 334
REJ10B0060-0600

Notes: 1. These registers can be used. Note that some register contents cannot be guaranteed
after service calls. For details, refer to section 3.2.3, Guarantee of Register Contents
after Issuing Service Call.

 2. When execution is returned from the entry function (RTS instruction), the contents of
these registers must be the same as the value at initiation.

 3. IMASK bits must not be lower than the value at initiation. And IMASK bits must be the
same as initial value when execution is returned from the handler.

 MD = 1, BL = 0, RB = 0, and FD = 0 are required.

(3) Writing Time Event Handlers and Initialization Routine in C Language Using the DSP

To use the DSP in time event handlers and the initialization routine, refer to section 4.13, Using
the DSP in Programs (for HI7000/4 and HI7700/4 only).

(4) Defining Time Event Handlers and Initialization Routine

a. A cyclic handler can be defined in the following ways:

⎯ cre_cyc, icre_cyc, acre_cyc, or iacre_cyc service call
⎯ Defined initially by the configurator

b. An alarm handler can be defined in the following ways:

⎯ cre_alm, icre_alm, acre_alm, or iacre_alm service call
⎯ Defined initially by the configurator

c. An overrun handler can be defined in the following ways:

⎯ def_ovr service call
⎯ Defined initially by the configurator

d. An initialization routine can be defined in the following ways:

⎯ Defined initially by the configurator

Section4 Application Program Creation

Rev.6.00 335
REJ10B0060-0600

4.11 CPU Initialization Routines

4.11.1 Creating CPU Initialization Routines in C language

The CPU initialization routine is a program that is first executed after the CPU is reset. For
details, refer to section 2.18.1, Resetting the CPU and Initiating the Kernel. Also refer to sample
files nnnn_cpuasm.src (assembly language) and nnnn_cpuini.c (C language).

4.11.2 Defining CPU Initialization Routines in HI7000/4

Define the start address of the CPU initialization routine to the reset vector (address H'0). Also
define the initial stack pointer to the reset vector. In addition, start up the kernel at the end of the
CPU initialization routine. Create the reset vector in one of the following ways.

(1) When the user creates a reset vector

Create the reset vector as shown in figure 4.12:

_INIT_SP .EQU H’FFFA000 ←Defines the initial stack

 pointer value after a reset

 (usually the last address

 within the internal RAM).

 .SECTION C_ResVec, DATA, LOCATE=0 ←Specifies C_ResVec as the

 .IMPORT _hi_cpuasm reset vector section name

 and allocates the section

 to address H'0.

_ResVec:

 .DATA.L _hi_cpuasm, _INIT_SP ←Specifies the program

 .DATA.L _hi_cpuasm, _INIT_SP address for vector number 0

 .END (power-on reset) or vector

 number 2 (manual reset) as

 _hi_cpuasm,and the stack

 pointer as _INIT_SP.

Figure 4.12 Example of Creating the Reset Vector (HI7000/4)

Section4 Application Program Creation

Rev.6.00 336
REJ10B0060-0600

(2) When defining the CPU initialization routine by the configurator

Define the CPU initialization routine address and reset stack pointer as an interrupt handler
address for interrupt numbers 0 to 3, respectively by the configurator. In addition, allocate the
C_hivct section, which is a vector table section created by the configurator, to address H'0 at
linkage.

4.11.3 Defining CPU Initialization Routines in HI7700/4 and HI7750/4

Allocate the CPU initialization routine to reset vector address H'a0000000 at linkage.

4.12 System Down Routines
The function specifications of the system down routine are defined as follows. Note that this
routine name is fixed.

 void kernel_sysdwn(W type, ER ercd, VW inf1, VW inf2)

Refer to appendix B.2, Information during System Down, for details on the parameters passed to
the system down routine. The system down routine must be created and linked to the kernel.

When writing a system down routine in C language, refer to sample file nnnn_sysdwn.c for
details.

Although the system down routine operates under abnormal conditions, it cannot use kernel
functions such as system calls if the kernel fails (error type is negative).

Do not return from a system down routine.

When debugging an application program, maintain the system down routine state and make the
program enter an endless loop, and analyze why a system down occurred and takes measures to
prevent system downs from occurring.

Section4 Application Program Creation

Rev.6.00 337
REJ10B0060-0600

4.13 Using the DSP in Programs (for HI7000/4 and HI7700/4 only)

4.13.1 Initializing DSR

The initial DSR value depends on the program as shown in table 4.21.

Table 4.21 Initial DSR Value

Program Initial DSR Value

Task (without attribute TA_COP0) Undefined

Task (with attribute TA_COP0) 0

Task exception processing routine (without attribute TA_COP0) Undefined

Task exception processing routine (with attribute TA_COP0) 0

Interrupt handler Undefined

CPU exception handler Undefined

Time event handler Undefined

Initialization routine Undefined

Initialize DSR to an appropriate value before starting DSP operation. For the initial value, refer
to the hardware manual of the target processor.

DSR must be initialized once in each program shown in the above table before DSP operation.

The following shows an example of DSR initialization in a task.

#include "kernel.h"

#pragma inline_asm(SetDSR) // Inline assembler function for DSR
setting

static void SetDSR(UW dsr)

{

 lds r4,dsr

}

void task(VP_INT exinf)

{

 SetDSR(0); // Initializes DSR

 // DSP operation

}

Section4 Application Program Creation

Rev.6.00 338
REJ10B0060-0600

4.13.2 Using DSP in Handlers

To use the DSP in the following programs, the contents of the DSP registers must be saved and
restored in the process shown in figure 4.13. In addition, at compilation, the code=asmcode
option must be specified by the object format specification option.

• Normal interrupt handlers

• Direct interrupt handlers (HI7000/4)

• CPU exception handlers

• Time event handlers

• Initialization routines

• Timer interrupt routines

When using DSP standby control function in HI7700/4, refer to appendix F.3, Module-Standby
State when Initiating Programs.

Section4 Application Program Creation

Rev.6.00 339
REJ10B0060-0600

#include “kernel.h”

#include “shdsp.h” ←Includes header file shdsp.h

#pragma inline_asm(SetDSR) ←Inline assembler function for DSR

 setting

static void SetDSR(UW dsr)

{

 lds r4,dsr

}

void HandlerMain(VP_INT exinf) ←Handler main routine

{

 /* Handler processing */

}

void Handler(VP_INT exinf) ←In the handler start function,

 writes only the process shown in

 this figure.

 Writes the handler main process

 in HandlerMain().

{

 T_DSP area; ←Defines the area to save the

 contents of the DSP registers.

 IniDSP(&area); ←Saves the contents of the DSP

 registers.

 SetDSR(0); ←Initializes DSR.

 HandlerMain(exinf); ←Calls HandlerMain(), which

 performs the main process.

 EndDSP(&area); ←Restores the contents of the

 DSP registers.

}

Figure 4.13 Example of a C Language Handler Using the DSP

Section4 Application Program Creation

Rev.6.00 340
REJ10B0060-0600

Rev.6.00 341
REJ10B0060-0600

Section 5 Configuration

5.1 Read First
Before creating a system, please read and fully understand this section.

The following tools are used for practical configuration:

• The configurator that comes with this product

• HEW

The description in this section is provided on the assumption that the user has already mastered
HEW. For information about HEW, refer to the HEW manual or online help. For information
about the configurator operation, refer to section 5.4, Configurator, or online help.

5.1.1 Whole Linkage and Separate Linkage

To create load modules for the system, the following operations are necessary:

• Create application files

• Create configuration files using the configurator

• Use the build function of HEW and create load modules

These three operations differ slightly according to the way the load modules are created.
Therefore, it is essential to decide on and understand the creation method first.

There are two different approaches to linkage: whole linkage into a single load module, and
separate linkage into separate load modules.

Whole Linkage

Whole linkage links the kernel and all configuration files into a single load module (called a
whole load module). Application files can be included in a whole load module or in separate
load modules (called an application load module).

Figure 5.1 shows the flow for creating a load module using whole linkage.

Section5 Configuration

Rev.6.00 342
REJ10B0060-0600

HEW

Supplied
library

kernel_def.c

kernel_cfg.c

Whole linkage project (_mix)

Whole load module

Application file HEW
Application
load module

Application project

*

nnnnnnnn

Note: Application files specified by the configurator are also required

Figure 5.1 Whole Load Module Creation

Separate Linkage

Separate linkage links the kernel code portion and the data portion into separate load modules.

A load module with the kernel code portion, called the kernel load module, is created by linking
kernel libraries and kernel_def.c, which is a part of the configurator output file. The linkage unit
of a kernel load module is called the kernel side.

A load module with the kernel data portion, called the kernel environment load module, is
created by linking kernel_cfg.c, which is a part of the configurator output file. The linkage unit
of a kernel environment load module is called the kernel environment side.

Separate linkage makes it possible to change some configuration parameters, such as the
maximum number of tasks (CFG_MAXTSKID), and to re-create a kernel environment load
module without changing a kernel load module even after the kernel load module is in ROM.

Application files can be included in a kernel load module, a kernel environment load module, or
in an independent application load module.

Figure 5.2 shows the flow for creating a load module using separate linkage.

Section5 Configuration

Rev.6.00 343
REJ10B0060-0600

Supplied library

Separate linkage (kernel side) project
(_def)

Kernel
load module

HEW
Application
load module

Application project

HEW

*1

Kernel
environment
load module

HEW

*2

kernel_def.c

kernel_cfg.c

Application file

nnnnnnnn

Separate linkage (kernel environment
side) project (_cfg)nnnnnnnn

Notes: 1. Application files specified for the kernel side by the configurator are also required
 2. Application files specified for the kernel environment side by the configurator are

also required

Figure 5.2 Separate Load Module Creation

Section5 Configuration

Rev.6.00 344
REJ10B0060-0600

5.2 Folder Structure
The kernel files are installed in the kernel folder under the installation folder which is specified
by the installer program as shown in figure 5.3.

hihead

hisys

hilib

 elf

samples

 shnnnn

knl

Figure 5.3 Folders under the kernel Folder

5.2.1 hihead Folder

This folder contains header files (e.g. itron.h or kernel.h) which are used in application.

5.2.2 hisys Folder

This folder contains system definition files which are used to compile configuration files.

The files in this folder must not be modified.

5.2.3 hilib Folder

This folder contains the folder which contains kernel library files.

The hilib\elf folder contains ELF-format kernel library files. Refer to the release notes for the
compiler version used at library creation.

5.2.4 knl Folder

This folder is provided only under the license with kernel source code.

Refer to the release notes attached to the product for details.

5.2.5 samples\shnnnn Folder

This folder contains sample files for microcomputer corresponding to nnnn. This folder also
contains the HEW workspace file for load module creation.

Section5 Configuration

Rev.6.00 345
REJ10B0060-0600

Tables 5.1 to 5.3 show relationship between nnnn and microcomputer in the HI7000/4 V.2.02,
HI7700/4 V.2.02, and HI7750/4 V.2.02, respectively. For the latest information, refer to the
release notes attached to the product.

Table 5.1 Relationship between nnnn and Microcomputer (HI7000/4 V.2.02)

nnnn CPU Core Target Microcomputer

HEW (Compiler
Package) Version Used
at Creation

7011 SH-2 SH7011, SH7018 1.2 (6.0C)

703x SH-1 SH7020, SH7021, SH7032, SH7034 1.2 (6.0C)

704x SH-2 SH7040, SH7041, SH7042, SH7043,
SH7044, SH7045, SH7014, SH7016,
SH7017

1.2 (6.0C)

7046 SH-2 SH7046, SH7047, SH7048, SH7049,
SH7144, SH7145, SH7148

1.2 (6.0C)

7050 SH-2 SH7050, SH7051 1.2 (6.0C)

7052 SH-2 SH7052, SH7053, SH7054 1.2 (6.0C)

7065 SH2-DSP SH7065 1.2 (6.0C)

7604 SH-2 SH7604 1.2 (6.0C)

7615 SH2-DSP SH7615, SH7616 1.2 (6.0C)

7618 SH-2 SH7618 4.00.02 (9.00 Release 03)

72060 SH-2A SH72060 4.00.02 (9.00 Release 03)

Section5 Configuration

Rev.6.00 346
REJ10B0060-0600

Table 5.2 Relationship between nnnn and Microcomputer (HI7700/4 V.2.02)

nnnn CPU Core Target Microcomputer

HEW (Compiler
Package) Version Used
at Creation

7707 SH-3 SH7707 1.2 (6.0C)

7708 SH-3 SH7708, SH7708R, SH7708S 1.2 (6.0C)

7709 SH-3 SH7709 1.2 (6.0C)

7709a SH-3 SH7709A, SH7709S, SH7706 1.2 (6.0C)

7729 SH3-DSP SH7729, SH7729R, SH7727 1.2 (6.0C)

7290 SH3-DSP SH7290, SH7294, SH7300 3.0.01 (8.00 Release 00))

7641 SH3-DSP SH7641 3.0.01 (8.00 Release 00)

7318 SH4AL-DSP
(without
extended
function)

SH7318 3.0.01 (8.00 Release 00)

7343 SH4AL-DSP
(with
extended
function)

SH7343 4.00.02 (9.00 Release 03)

Table 5.3 Relationship between nnnn and Microcomputer (HI7750/4 V.2.02)

nnnn CPU Core Target Microcomputer

HEW (Compiler
Package) Version Used
at Creation

7750 SH-4 SH7750, SH7750S, SH7750R 1.2 (6.0C)

7751 SH-4 SH7751, SH7751R 1.2 (6.0C)

7760 SH-4 SH7760 3.0.01 (8.00 Release 00)

7770 SH-4A
(without
extended
function)

SH7770 3.0.01 (8.00 Release 00)

7785 SH-4A (with
extended
function)

SH7785 4.00.02 (9.00 Release 03)

The contents of the shnnnn folder are described below.

Section5 Configuration

Rev.6.00 347
REJ10B0060-0600

(1) HEW3 or Later Versions

The shnnnn folder contains the folders shown in figure 5.4.

shnnnn

 src

 mix

 def

 cfg

Figure 5.4 Folders under the shnnnn Folder (HEW3 or Later Versions)

(a) Sample HEW workspace file (shnnnn.hws)

The shnnnn folder contains this workspace file. In this workspace, the following three projects
are registered.

(1) For whole linkage (mix\mix.hwp)

(2) For separate linkage, kernel side (def\def.hwp)

(3) For separate linkage, kernel environment side (cfg\cfg.hwp)

(b) shnnnn\src folder

This folder contains the following source files.

• Sample task (task.c)
• Sample timer driver (nnnn_tmrdrv.c, nnnn_tmrdrv.h, nnnn_tmrdef.h)
• Sample CPU initialization routine (nnnn_cpuasm.src, nnnn_cpuini.c)
• Sample system down routine (nnnn_sysdwn.c)
• Sample configurator information file (nnnn.hcf), and its generated files (see table

5.4)
• Sample section initialization process (nnnn_sct.src, nnnn_inisct.c: These files are not

used in the state at shipment)
• Only for HI7000/4: Interrupt/CPU exception process (kernel_exp.src)
• Only for HI7700/4 and HI7750/4: Interrupt/CPU exception entry process

(nnnn_expent.src)
• Only for HI7700/4 and HI7750/4: Undefined interrupt/CPU exception process

(nnnn_intdwn.src)
• kernel_def.c and kernel_cfg.c
• Only for HI7700/4: DSP standby control function setting file

(kernel_def_dspstby_set.h)
• Only for HI7700/4: Optimized timer function setting file (kernel_def_opttmr_set.h)
• Only for SH4AL-DSP and SH-4A in HI7700/4 and HI7750/4: Cache support service

call setting file (kernel_cfg_cac_set.h)

Section5 Configuration

Rev.6.00 348
REJ10B0060-0600

(c) shnnnn\mix folder

This folder contains the mix.hwp file which is the HEW project file for whole linkage.

This folder also contains a folder to store object files to be generated through the mix.hwp
project.

(d) shnnnn\def folder

This folder contains the def.hwp file which is the HEW project file for separate linkage (kernel
side).

This folder also contains a folder to store object files to be generated through the def.hwp
project.

(e) shnnnn\cfg folder

This folder contains the cfg.hwp file which is the HEW project file for separate linkage (kernel
environment side).

This folder also contains a folder to store object files to be generated through the cfg.hwp
project.

(2) HEW1.2

The shnnnn folder contains the folders shown in figure 5.5.

shnnnn

 project

 src

Figure 5.5 Folders under the shnnnn Folder (HEW1.2)

(a) Sample HEW workspace file (shnnnn.hws)

The shnnnn folder contains this workspace file. In this workspace, the following three projects
are registered.

(1) For whole linkage (project\mix.hwp)

(2) For separate linkage, kernel side (project\def.hwp)

(3) For separate linkage, kernel environment side (project\cfg.hwp)

(b) shnnnn\project folder

This folder contains the three project files that are registered in shnnnn.hws. Under this folder, a
folder is prepared for each project to store object files to be generated through the respective
project.

Section5 Configuration

Rev.6.00 349
REJ10B0060-0600

(c) shnnnn\project\src folder

This folder contains the following source files.

• Sample task (task.c)
• Sample timer driver (nnnn_tmrdrv.c, nnnn_tmrdrv.h, nnnn_tmrdef.h)
• Sample CPU initialization routine (nnnn_cpuasm.src, nnnn_cpuini.c)
• Sample system down routine (nnnn_sysdwn.c)
• Sample configurator information file (nnnn.hcf), and its generated files (see Table

5.4)
• Sample section initialization process (nnnn_sct.src, nnnn_inisct.c: These files are not

used in the state at shipment)
• Only for HI7000/4: Interrupt/CPU exception process (kernel_exp.src)
• Only for HI7700/4 and HI7750/4: Interrupt/CPU exception entry process

(nnnn_expent.src)
• Only for HI7700/4 and HI7750/4: Undefined interrupt/CPU exception process

(nnnn_intdwn.src)
• kernel_def.c and kernel_cfg.c
• Only for HI7700/4: DSP standby control function setting file

(kernel_def_dspstby_set.h)
• Only for HI7700/4: Optimized timer function setting file (kernel_def_opttmr_set.h)

5.3 Operating Procedure
The following describes the normal operating procedure:

1. Double-click hios\hiuser\shnnnn\nnnn.hcf and initiate the configurator.

2. Provide necessary settings for the configurator.

3. Save nnnn.hcf and generate configuration files. The folder to store generated files must be
the folder which includes kernel_def.c and kernel_cfg.c.

4. Terminate the configurator.

5. Double-click sample HEW workspace file shnnnn.hws to initiate HEW. Then, specify the
project to be used.

6. Provide necessary operations, such as adding application files to HEW or setting the C
compiler or linkage editor options, and execute the build. Then, load module files are created
in the respective directories, such as hios\hiuser\obj\.

Section5 Configuration

Rev.6.00 350
REJ10B0060-0600

5.4 Configurator
This section describes basic configurator operations and settings. For details on configurator
operations, refer to the configurator online help.

5.4.1 Overview

The configurator is a tool that is used to set the kernel operating parameters. The configurator
creates C source files according to the settings. The created files and applications are built
(compiled and linked) into a system (load module).

Figure 5.6 shows the position of the configurator in the system configuration.

Project definition file

ConfiguratorConfigurator

Input

User
operation

Output

Build

Load module

Application
(including sample
program)
 _tmrdrv.c,
etc.
nnnnnnnn

Header file HEW project
(_mix, etc.)nnnnnnnn

itron.h,
kernel.h,

kernel_id.h,
kernel_macro.h

kernel_def_main.h,
kernel_cfg_main.h,
etc

Configuration
file
 kernel_def.c
 kernel_cfg.c

Configuration file

Include

Include
Include

HCF
file

D
efinition

Shaded parts indicate configurator output files.

Figure 5.6 Position of Configurator in System Configuration

Section5 Configuration

Rev.6.00 351
REJ10B0060-0600

5.4.2 Configurator Construction

Figure 5.7 shows the configurator window.

The configurator window consists of a list window of configuration information input parts (on
the left side) and a configuration information input window (on the right side). Input data in the
configuration information input window and execute the Configuration File Creation command
with the menu or the tool button. The configuration files are then created.

Figure 5.7 Configurator Window

Section5 Configuration

Rev.6.00 352
REJ10B0060-0600

5.4.3 File Operation

(1) Configurator Settings File (HCF File)

Configurator parameters and settings can be saved in the HCF file.

(2) Configuration File Creation

When [Generate Configuration Files] in the [Generate] menu is selected or [Generate] button in
the toolbar is pressed, the dialog box shown in figure 5.8 opens. Specify a folder where a
configuration file is to be created.

The configuration file must be generated in a folder containing the kernel_def.c or kernel_cfg.c.

Figure 5.8 Folder Selection Dialog

The files listed in table 5.4 are created in the specified folder. Note that if a file with the same
name already exists, the file is automatically overwritten.

5.4.4 Configuration Files

Table 5.4 shows configuration files generated by the configurator.

Table 5.4 Configuration Files

Classification File Name Linkage Unit

Header Files kernel_id.h Kernel environment side

 kernel_id_sys.h Kernel side

 kernel_macro.h Kernel side

System definition kernel_def_main.h Kernel side

 kernel_def_inidata.def Kernel side

 kernel_def_vct.inc Kernel side (only in HI7000/4)

 kernel_cfg_main.h Kernel environment side

 kernel_cfg_inidata.def Kernel environment side

Section5 Configuration

Rev.6.00 353
REJ10B0060-0600

Distinction of linkage unit is related to the following items.

• Automatic assignment of ID number: Refer to (1) kernel_id.h, kernel_id_sys.h.
• Separate linkage: Refer to section 5.4.5, Separate Linkage.

(1) kernel_id.h, kernel_id_sys.h

The objects which are discriminated by the ID numbers can be given ID names at the object
creation. The specified ID name is output to ID header files in the following form.

 #define ID_MainTask 1

The ID name in the kernel side is output to kernel_id_sys.h. The ID name in the kernel
environment side is output to kernel_id.h.

If the object is created in the kernel environment side (without [Link with Kernel Library] check
box), the configurator can assign an ID number automatically. If "Auto" is selected as an ID
number in the object creation dialog box, the configurator assigns an ID number automatically.

(2) kernel_macro.h

kernel_macro.h is included from kernel.h. Refer to section 4.1.1, Header File.

(3) System definition files in kernel side (kernel_def_main.h, kernel_def_inidata.def,
kernel_def.vct.inc)

kernel_def_main.h and kernel_def_inidata.def are included from kernel_def.c.

kernel_def_vct.inc is generated only in HI7000/4, and is included from nnnn_expent.src and
nnnn_intdwn.src.

(4) System definition files in kernel environment side (kernel_cfg_main.h,
kernel_cfg_inidata.def)

kernel_cfg_main.h and kernel_cfg_inidata.def are included from kernel_cfg.c

Note that the contents of the files differ among the HI7000/4 series. If the files are compiled in a
different HI7000/4-series environment, an error occurs during compilation. The following error
message is output when a file created by the HI7750/4 configurator is compiled in the HI7000/4
or HI7700/4 environment.

Unmatch HIOS(This file is designed for HI7750/4.)

Section5 Configuration

Rev.6.00 354
REJ10B0060-0600

5.4.5 Separate Linkage

(1) Linkage Unit of Setting Items and Kernel Lock Mode

All setting items are classified into "Kernel side" and "Kernel environment side". The setting
items on the kernel side and the setting items on the kernel environment side are separately
output to the respective files (refer to table 5.4).

In separate linkage, kernel environment load modules are usually modified alone, without
modifying kernel load modules. For this operation, the configurator provides the kernel lock
mode. In this mode, editing of the parameters that are to be expanded in a kernel-side output file
is limited and no kernel side file is output.

To enter kernel lock mode, put a check mark in [Generate] -> [Kernel Lock Mode].

Whether each item is on the kernel side or kernel environment side can be checked by specifying
the kernel lock mode, but for details, refer to the help information of the configurator.

In addition, for generation of objects such as tasks, the kernel side or kernel environment side
can be assigned and checked as follows.

• All object creation dialog boxes have the [Link with Kernel Library] check box. If
this box is checked, the object is on the kernel side.

• The object that is marked by a flag icon in the object page is on the kernel side.

In an object creation dialog box, when specifying the symbol of applications, such as the address
of a task, the symbol instance must be included in the suitable linkage unit (kernel side or kernel
environment side).

(2) kernel_id.h

The application on the kernel side must not include kernel_id.h because kernel_id.h is a file on
the kernel environment side.

Section5 Configuration

Rev.6.00 355
REJ10B0060-0600

5.4.6 Configurator Settings

Most configurator settings influence kernel operation. These settings are named with the prefix
CFG_, and these names are displayed on the configurator screen and also used in this manual.
However, note that some settings do not have names.

Table 5.5 lists the settings. The following letters are used in this table:

[L]: Kernel side items. Cannot be changed in the kernel lock mode

[B]: Can be set either for the kernel side or the kernel environment side by [Link with Kernel
Library] check box

[BA]: Can be set either for the kernel side or the kernel environment side by [Link with Kernel
Library] check box, and an ID name can be specified. If the kernel environment side is selected,
"Auto" can be selected for the ID number. When specifying ID names, be careful not to specify
the names that have already been used or externally defined names such as function names.

Section5 Configuration

Rev.6.00 356
REJ10B0060-0600

Table 5.5 Configurator Setting Items

1. Kernel Operating Condition Page

kernel interrupt mask level CFG_KNLMSKLVL [L] 1

The kernel has a function to set SR.IMASK to the specified value and execute it. Interrupt
handlers with level higher than CFG_KNLMSKLVL cannot issue a service call.

For the HI7000/4, interrupts with level higher than CFG_KNLMSKLVL must be described as
direct interrupt handlers.

Interrupt nest count with a level higher than the kernel
interrupt mask level (only for HI7000/4)

CFG_UPPINTNST 2

For the HI7000/4, the maximum nest count for interrupts with level higher than
CFG_KNLMSKLVL must be specified.

Interrupt nest count with a level equal to or lower than
the kernel interrupt mask level (only for HI7000/4)

CFG_LOWINTNST 3

For the HI7000/4, the maximum nest count for interrupts with a level equal to or lower than
CFG_KNLMSKLVL must be specified.

How to use TBR register (only for HI7000/4) CFG_TBR [L] 4

Can be chosen from the following.
(1) Kernel does not Manage
(2) Only for Service Call

(3) Task Context
When using a microcomputer without TBR, choose (1).
For Details, refer to section 4.2.8, TBR Register (SH-2A, SH2A-FPU).

2. Kernel Extended Function Page

Service call parameter check CFG_PARCHK [L] 1

When this item is checked, the service call static parameter error is checked. Errors that are
checked are indicated by the letter [p] in each service call explanation in section 3, Service
Calls.

Use of SH3-DSP or SH4AL-DSP (only for HI7700/4) CFG_DSP [L] 2

Remember to check this item when using a processor with the DSP bit (such as SH7729) in
the SR. Refer to section 4.2.1 SR Register, and section 4.2.2, Cache Lock Function (SH-3,
SH3-DSP).

Use of processor with cache lock function (only for
HI7700/4)

CFG_CACLOC [L] 3

Refer to section 4.2.2, Cache Lock Function (SH-3, SH3-DSP).

Section5 Configuration

Rev.6.00 357
REJ10B0060-0600

Table 5.5 Configurator Setting Items (cont)

3. Time Management Function Page

Use of kernel time management function CFG_TIMUSE [L] 1

When using service calls with time parameters, such as tslp_tsk or the cyclic handler, check
CFG_TIMUSE. At this time, remember to create a timer driver. For details, refer to Appendix
D, Timer Driver.

Timer interrupt number CFG_TIMINTNO [L] 2

For HI7000/4, specify the timer interrupt vector number. For HI7700/4 and HI7750/4, specify
INTEVT code.

Timer interrupt level CFG_TIMINTLVL [L] 3

CFG_TIMINTLVL is output as TIM_LVL to kernel_macro.h. The timer interrupt level must be
specified with the timer driver according to the information in kernel_macro.h.
When using optimized timer driver in HI7700/4, set CFG_TIMINTLVL as the same value as
CFG_KNLMSKLVL.

Time event handler stack size CFG_TIMRSTKSZ [L] 4

Specify a size calculated according to the description in Appendix C.8, Stack Size Used by a
Time Event Handler.

Time tick cycle numerator (TIC_NUME) and
time tick cycle denominator (TIC_DENO)

CFG_TICNUME,
CFG_TICDENO

[L] 5

Time tick cycle time is set to TIC_NUME/TIC_DENO [ms]. At least one of TIC_NUME and
TIC_DENO must be 1. If a value more than 1 is specified for TIC_DENO, the maximum value
specifiable for TMO, RELTIM, or OVRTIM type parameter is limited to [specifiable value with
each type]/TIC_DENO.

A value between 1 and 65535 can be specified for TIC_NUME. For TIC_DENO, a value
between 1 and 100 can be specified.

TIC_NUME and TIC_DENO are output to kernel_macro.h. The time tick cycle must be
specified with the timer driver according to the kernel_macro.h information.

4. Debugging Function Page

Object manipulation functions of debugging
extension

CFG_ACTION [L] 1

Check this item when using object manipulation functions ([Action] is displayed in the DX dialog
title), such as initiating a task.

When CFG_ACTION is checked, please be sure to set up as follows.

 - Check CFG_TIMUSE in Time Management Function Page.

 - Select cre_cyc service call in Service Call Selection Page.

Embedding of service call trace function CFG_TRACE [L] 2

Check this item when using the service call trace function with the debugging extension. Refer
to section 2.17.2, Service Call Trace Function.

Section5 Configuration

Rev.6.00 358
REJ10B0060-0600

Table 5.5 Configurator Setting Items (cont)

Type of service call trace function CFG_TRCTYPE [L] 3

Either target trace or emulator trace (tool trace) can be selected. Refer to the manual or on line
help of the debugging extension for the environment where emulator trace (tool trace) can be
used.

Buffer size for target trace CFG_TRCBUFSZ 4

Specify the buffer size in bytes that will be used if target trace is selected.

5. Service Call Selection Page

 Select to embed service calls. If a service call that has not been embedded is issued, the error
E_NOSPT is returned.

Note that there is no selectable item of the service call beginning with 'i'. Selecting the service
call without 'i' means that the service call beginning with corresponding 'i' has been
automatically selected.

When each object is used, be sure to select the service call (see the table below) that generates
and defines the object.

Object Service call Object Service call
Task(dynamic stack used) cre_tsk Message buffer cre_mbf
Task(static stack used) vscr_tsk Fixed-size memory pool cre_mpf
Task exception processing def_tex Variable-size memory pool cre_mpl
routine Cyclic handler cre_cyc
Semaphore cre_sem Alarm handler cre_alm
Eventflag cre_flg Overrun handler def_ovr
Data queue cre_dtq Extended service call def_svc
In addition, with the service call selection page, vchg_cop service call of the HI7700/4 cannot be
chosen but is automatically incorporated by incorporating DSP standby control function. For
details, refer to Appendix F, DSP Standby Control (HI7700/4).

6. Interrupt Handler/CPU Exception Handler Page

Maximum interrupt number CFG_MAXVCTNO [L] 1

Specify the maximum number of interrupts or exception factors used in the system. For
HI7000/4, specify the processor vector number. For HI7700/4 and HI7750/4, specify the
processor interrupt or exception code. The maximum allowed value is 511 for HI7000/4, and
0x3fe0 for HI7700/4 and HI7750/4.

Interrupt handler stack size CFG_IRQSTKSZ 2

For details on stack size calculations, refer to Appendix C.7, Interrupt Handler Stacks.

Only the direct interrupt handler is used (only for
HI7000/4)

CFG_DIRECT [L] 3

When neither the normal interrupt handler, CPU exception handler, nor trap exception handler
is used, this must be checked.

Section5 Configuration

Rev.6.00 359
REJ10B0060-0600

Table 5.5 Configurator Setting Items (cont)

Handler definition information is assigned to RAM, and
def_inh, def_exc, and vdef_trp are embedded

CFG_VCTRAM [L] 4

Specifies whether the definition information for the interrupt handler, CPU exception handler,
and trap exception handler is assigned to ROM or RAM. If it is assigned to ROM, the amount
of ROM consumption can be smaller, def_inh, def_exc, vdef_trp cannot be used, and check
for linking with the kernel cannot be cleared when the handler is defined by the configurator.

Register Bank (only for HI7000/4) CFG_REGBANK [L] 5

When using the register banks in SH-2A, check this.
When using a microcomputer without register banks (microcomputers other than SH-2A), do
not check this.
For Details, refer to section 4.2.9, Register Banks (SH-2A, SH2A-FPU).

IBNR Register Address (only for HI7000/4) CFG_IBNR_ADR [L] 6

Specify the IBNR register address.

For Details, refer to section 4.2.9, Register Banks (SH-2A, SH2A-FPU).

7 Definition of interrupt handler or CPU exception handler ⎯ [B]

 Specifiable contents are the same as those of the def_inh and def_exc service calls. They are
also the same as those of the vdef_trp service call for HI7000/4.

When defining this item on the kernel environment side, the def_inh or def_exc service call
must be embedded for HI7700/4 or HI7750/4. For the HI7000/4, whether or not the def_inh
and vdef_trp service calls are embedded is automatically determined. These service calls
cannot be selected in the service call selection page.

7. Trap Exception Handler Page (only for HI7700/4, HI7750/4)

Maximum trap number CFG_MAXTRPNO [L] 1

Specify the maximum trap number to be used in the system. The maximum number
specifiable is 255.

CPU exception handler definition (for TRAPA) ⎯ [B] 2

Specifiable contents are the same as those of the vdef_trp service call.

When defining this item on the kernel environment side, the vdef_trp service call must be
embedded.

8. Pre-fetch Function Page (only for HI7700/4 and HI7750/4)

Address and range to be pre-fetched ⎯ [B] 1

Specify the start address and size to be pre-fetched when the kernel is in the idle state.

9. Initialization Routine Page

Initialization routine definition ⎯ [B] 1

Specify the initialization routine settings, such as the initialization routine address, extended
information, and stack size.

Section5 Configuration

Rev.6.00 360
REJ10B0060-0600

Table 5.5 Configurator Setting Items (cont)

10. Task Page
Maximum task ID CFG_MAXTSKID
Maximum task ID using a static stack CFG_STSTKID [L]

1

Tasks with ID numbers between 1 and CFG_STSTKID use the static stack, and tasks with ID
numbers between CFG_STSTKID + 1 and CFG_MAXTSKID use the dynamic stack.
The maximum value specifiable for CFG_MAXTSKID is 1023, and that for CFG_STSTKID is
CFG_MAXTSKID.
The following service calls must be embedded, corresponding to the CFG_MAXTSKID and
CFG_STSTKID settings:
• When CFG_STSTKID = 0, all tasks are set to use the dynamic stack. The cre_tsk service

call must be embedded.

• When CFG_MAXTSKID = CFG_STSTKID, all tasks are set to use the static stack. The
vscr_tsk service call must be embedded.

• When CFG_MAXTSKID > CFG_STSTKID, the cre_tsk and vscr_tsk service calls must be

embedded.
Definition of static stack ⎯ [L] 2
If a value other than 0 is specified for CFG_STSTKID, define the static stack area used by
tasks with ID between 1 and CFG_STSTKID.
Maximum task priority (TMAX_TPR1) CFG_MAXTSKPRI [L] 3
The range of usable task priorities is 1 to CFG_MAXTSKPRI. The maximum value specifiable
is 255. The same value of CFG_MAXTSKPRI is output to kernel_macro.h as TMAX_TPRI.
Dynamic stack area size CFG_TSKSTKSZ 4
When a task with ID between CFG_STSTKID + 1 and CFG_MAXTSKID is created, a stack
area is allocated within the specified area.
Task creation ⎯ [BA] 5
Setting contents are the same as those of the cre_tsk and vscr_tsk service calls.
When creating a task using the static stack, select a stack used by the task in the static stack
defined in item 2. Tasks with the same stack specification share the stack.
When specifying [Start Task after Creating It (TA_ACT)] for attribute, the order of task
execution may change according to the order of task creation. Tasks are first created from the
top of the kernel window side, then from the top of the kernel environment window side. Move
the task registration location by pressing [Up] or [Down] in the pop up menu.
Automatic ID assignment can be set only to tasks using the dynamic stack and that have been
created on the kernel environment side.
Definition of task exception processing routine ⎯ [B] 6
The task exception processing routine can be defined for a task created in item 5, if
necessary. For separate linkage, the task and the task exception processing routine must
include the same linkage unit (kernel side or kernel environment side) as the target task.
When the task exception processing routine is defined, the def_tex service call must be
embedded.

Section5 Configuration

Rev.6.00 361
REJ10B0060-0600

Table 5.5 Configurator Setting Items (cont)

11. Semaphore Page

Maximum semaphore ID CFG_MAXSEMID 1

The range of usable semaphore IDs is 1 to CFG_MAXSEMID. The maximum value
specifiable is 1023. When no semaphore is used, specify 0.

When a value more than 1 is specified, the cre_sem service call must be embedded.

Semaphore creation ⎯ [BA] 2

Specifiable contents are the same as those of the cre_sem service call.

12. Event Flag Page

Maximum event flag ID CFG_MAXFLGID 1

The range of usable event flag IDs is 1 to CFG_MAXFLGID. The maximum value specifiable
is 1023. When no event flag is used, specify 0.

When a value more than 1 is specified, the cre_flg service call must be embedded.

Event flag creation ⎯ [BA] 2

Specifiable contents are the same as those of the cre_flg service call.

13. Data Queue Page

Maximum data queue ID CFG_MAXDTQID 1

The range of usable data queue IDs is 1 to CFG_MAXDTQID. The maximum value
specifiable is 1023. When no data queue is used, specify 0.

When a value more than 1 is specified, the cre_dtq service call must be embedded.

Data queue area size CFG_DTQSZ 2

When a data queue is created, a data queue is allocated within an area of the specified size.

Data queue creation ⎯ [BA] 3

Specifiable contents are the same as those of the cre_dtq service call.

14. Mailbox Page

Maximum mailbox ID CFG_MAXMBXID 1

The range of usable mailbox IDs is 1 to CFG_MAXMBXID. The maximum value specifiable is
1023. When no mailbox is used, specify 0.

When a value more than 1 is specified, the cre_mbx service call must be embedded.

Maximum message priority (TMAX_MPRI) CFG_MAXMSGPRI [L] 2

The range of usable message priorities is 1 to CFG_MAXMSGPRI. The same value of
CFG_MAXMSGPRI is output to kernel_macro.h as TMAX_MPRI.

Mailbox creation ⎯ [BA] 3

Specifiable contents are the same as those of the cre_mbx service call.

Section5 Configuration

Rev.6.00 362
REJ10B0060-0600

Table 5.5 Configurator Setting Items (cont)

15. Mutex Page

Maximum mutex ID CFG_MAXMTXID 1

The range of usable mutex IDs is 1 to CFG_MAXMTXID. The maximum value specifiable is
1023. When no mutex is used, specify 0.

When a value more than 1 is specified, the cre_mtx service call must be embedded.

Mutex creation ⎯ [BA] 2

Specifiable contents are the same as those of the cre_mtx service call.

16. Message Buffer Page

Maximum message buffer ID CFG_MAXMBFID 1

The range of usable message buffer IDs is 1 to CFG_MAXMBFID. The maximum value
specifiable is 1023. When no message buffer is used, specify 0.

When a value more than 1 is specified, the cre_mbf service call must be embedded.

Message buffer area size CFG_MBFSZ 2

When a message buffer is created, a message buffer is allocated with area of the specified
size.

Message buffer creation ⎯ [BA] 3

Specifiable contents are the same as those of the cre_mbf service call.

17. Fixed-Size Memory Pool Page

Maximum fixed-size memory pool ID CFG_MAXMPFID 1

The range of usable fixed-size memory pool IDs is 1 to CFG_MAXMPFID. The maximum
value specifiable is 1023. When no fixed-size memory pool is used, specify 0.

When a value more than 1 is specified, the cre_mpf service call must be embedded.

Fixed-size memory pool area size CFG_MPFSZ 2

When a fixed-size memory pool is created, a fixed-size memory pool is allocated with area of
the specified size.

Fixed-size Memory Pool Management Method CFG_MPFMANAGE [L] 3

When this is checked, kernel management tables are not located in a memory pool domain.

Refer to section 2.14, Fixed-Size Memory Pool.

Fixed-size memory pool creation ⎯ [BA] 4

Specifiable contents are the same as those of the cre_mpf service call.

18. Variable-Size Memory Pool Page

Maximum variable-size memory pool ID CFG_MAXMPLID 1

The range of usable variable-size memory pool IDs is 1 to CFG_MAXMPLID. The maximum
value specifiable is 1023. When no variable-size memory pool is used, specify 0.

When a value more than 1 is specified, the cre_mpl service call must be embedded.

Section5 Configuration

Rev.6.00 363
REJ10B0060-0600

Table 5.5 Configurator Setting Items (cont)

Variable-size memory pool area size CFG_MPLSZ 2

When a variable-size memory pool is created, a variable-size memory pool is allocated with
area of the specified size.

Variable-size memory pool management method CFG_NEWMPL [L] 3

When CFG_NEWMPL is not selected, the conventional management method in the previous
versions (HI7000/4 V.2.00 Release 02 or earlier, HI7700/4 V.1.03 Release 02 or earlier, and
HI7750/4 V.1.1.00 or earlier versions) is applied.

Selecting CFG_NEWMPL improves the following.

1. Acquisition and return of memory blocks are faster when a large number of memory blocks

are used in the memory pool.

2. The VTA_UNFRAGMENT attribute can be used to reduce fragmentation of free space.

When CFG_NEWMPL is selected, note that new members are added to the T_CMPL
structure in comparison with the conventional method. For details, refer to section 3.14.1,
Create Variable-Size Memory Pool.

Variable-size memory pool creation ⎯ [BA] 4

Specifiable contents are the same as those of the cre_mpl service call.

19. Cyclic Handler Page

Maximum cyclic handler ID CFG_MAXCYCID 1

The range of usable cyclic handler IDs is 1 to CFG_MAXCYCID. The maximum value
specifiable is 14. When no cyclic handler is used, specify 0.

When a value more than 1 is specified, the cre_cyc service call must be embedded.

Cyclic handler creation ⎯ [BA] 2

Specifiable contents are the same as those of the cre_cyc service call.

20. Alarm Handler Page

Maximum alarm handler ID CFG_MAXALMID 1

The range of usable alarm handler IDs is 1 to CFG_MAXALMID. The maximum value
specifiable is 15. When no alarm handler is used, specify 0.

When a value more than 1 is specified, the cre_alm service call must be embedded.

Alarm handler creation ⎯ [BA] 2

Specifiable contents are the same as those of the cre_alm service call. Refer to the service
call description in section 3.

21. Overrun Handler Page

Overrun handler definition ⎯ [B] 1

Specifiable contents are the same as those of the def_ovr service call. When defining this
item, the def_ovr service call must be embedded.

Section5 Configuration

Rev.6.00 364
REJ10B0060-0600

Table 5.5 Configurator Setting Items (cont)

22. Extended Service Call Page

Maximum function code of extended service call CFG_MAXSVCCD 1

The range of usable function codes is 1 to CFG_MAXSVCCD. The maximum value
specifiable is 1023. When no extended service call is used, specify 0.

When a value more than 1 is specified, the def_svc service call must be embedded.

Extended service call creation ⎯ [B] 2

Specifiable contents are the same as those of the def_svc service call.

5.5 When Optimized Timer Driver is Used (HI7700/4)
Refer to Appendix E, Optimized Timer Driver (HI7700/4).

5.6 When DSP Standby Control Function is Used (HI7700/4)
Refer to Appendix F, DSP Standby Control.

5.7 When Cache Support Function is Used on SH4AL-DSP (HI7700/4)
or SH-4A (HI7750/4)

In kernel_cfg_cac_set.h, define the size of the instruction cache and operand cache built in the
target microcomputer. When the on-chip cache has a 2-way structure, specify the actual cache
size × 2. When the on-chip cache has a 4-way structure and it is used in 2-way mode, the size
must not be doubled. kernel_cfg_cac_set.h is included by kernel_cfg.c. An example is shown
below.

/***

 * Cache size information

 * Please define the specified Cache size in CPU to be used.

 * (1) IC_SIZE : Instruction Cache size [Bytes]

 * (2) OC_SIZE : Operand Cache size [Bytes]

***/

#define IC_SIZE 32768UL

#define OC_SIZE 32768UL

Note that kernel_cfg_cac_set.h is stored only in the sample folders for the microcomputers that
include SH4AL-DSP or SH-4A CPU core (the sh7318 and sh7343 folders in HI7700/4 V.2.02
Release 00 and the sh7770 and sh7785 folders in HI7750/4 V.2.02 Release 00 as of writing this
manual). At this manual creation time, they are sh7318 and sh7343 folders of the HI7700/4 and
sh7770 and sh7785 folders of the HI7750/4. Similarly, kernel_cfg.c only in these folders
includes kernel_cfg_cac_set.h.

Section5 Configuration

Rev.6.00 365
REJ10B0060-0600

5.8 HEW Workspace and Projects
Use the following procedure to create load modules with the HEW build function.

1. Add the files necessary for creating the load module in a project.

2. Specify the options for the compiler, assembler, and optimized linkage editor.

3. Run the Build command.

This product supplies a sample workspace file (shnnnn.hws). Double-clicking this file opens it
and starts HEW.

The shnnnn.hws includes the following sample projects for the target microcomputer.

(1) HEW3 or later

• mix: Whole linkage
• def: Separate linkage, kernel side
• cfg: Separate linkage, kernel environment side

(2) HEW1.2

• nnnn_mix: Whole linkage (for the microcomputer corresponding to nnnn)
• nnnn_def: Separate linkage, kernel side (for the microcomputer corresponding to

nnnn)
• nnnn_cfg: Separate linkage, kernel environment side (for the microcomputer

corresponding to nnnn)

Select a project for the appropriate microcomputer, and change the settings as explained below.
The following explains only the items that should be especially kept in mind.

To select a sample project, select a project from the workspace window and select [Set as
Current Project] from the pop-up menu as shown in figure 5.9.

Opening a project file and clicking the Build button compiles, assembles, links, and converts the
files in the project, and creates a load module.

In addition, the HEW screen carried after this section was acquired in the following
environments.

• HEW: HEW4 which is attached in compiler package V.9.00 Release 03
• Kernel: HI7700/4 V.2.02 Release 00

By the HEW version or kernel, HEW screen may differ from a screen found in this section.

Section5 Configuration

Rev.6.00 366
REJ10B0060-0600

Figure 5.9 Project Selection

Section5 Configuration

Rev.6.00 367
REJ10B0060-0600

5.9 Kernel Libraries
The kernel library is stored in the hilib\elf folder and linked in the kernel side at the separate
linkage (def) or whole linkage (mix). Multiple kernel libraries should be specified with the
priority according to the function to be used. In the HEW, when the kernel library is specified
upper of the screen for specifying the library, the priority becomes higher (see figure 5.11).

5.9.1 HI7000/4

Table 5.6 lists the linkage priority of the HI7000/4 kernel library.

Table 5.6 Linkage Priority of the Kernel Library (HI7000/4)

CPU Core Linkage Priority

SH-1, SH-2, SH-2A (without FPU) For big endian: hiknl.lib

For little endian: hiknl_little.lib

SH2-DSP (1) dsp_knl.lib

(2) hiknl.lib

SH2A-FPU (1) fpu_knl.lib

(2) hiknl.lib

Following kernel libraries are used for supporting the debugger and usually not used.

• hiexpand.lib and hiexpand_little.lib

• dsp_expand.lib

• fpu_expand.lib

5.9.2 HI7700/4

Table 5.7 lists the linkage priority of the HI7700/4 kernel library.

Section5 Configuration

Rev.6.00 368
REJ10B0060-0600

Table 5.7 Linkage Priority of the Kernel Library (HI7700/4)

CPU Core

DSP-Standby
Control Function

Optimized timer
Driver Function

Linkage Priority

SH-3 (Cannot be used) Unused (1) 7708_cache_???.lib

(2) hiknl_???.lib

 Used (1) opttmr_???.lib
(2) 7708_cache_???.lib
(3) hiknl_???.lib

SH3-DSP Unused Unused (1) dsp_knl_???.lib
(2) 7708_cache_???.lib
(3) hiknl_???.lib

 Used (1) dsp_knl_???.lib
(2) opttmr_???.lib
(3) 7708_cache_???.lib

(4) hiknl_???.lib

 Used Unused (1) dspstby_???.lib
(2) dsp_knl_???.lib

(3) 7708_cache_???.lib
(4) hiknl_???.lib

 Used (1) dspstby_???.lib
(2) dsp_knl_???.lib
(3) opttmr_???.lib

(4) 7708_cache_???.lib
(5) hiknl_???.lib

Unused Unused (1) sh4al_dsp_knl_???.lib
(2) sh4al_cache_???.lib

(3) hiknl_???.lib

SH4AL-
DSP
(without
extended
function) Used (1) sh4al_dsp_knl_???.lib

(2) sh4al_opttmr_???.lib
(3) sh4al_cache_???.lib

(4) hiknl_???.lib

 Used Unused (1) sh4al_dspstby_???.lib
(2) sh4al_dsp_knl_???.lib

(3) sh4al_cache_???.lib
(4) hiknl_???.lib

 Used (1) sh4al_dspstby_???.lib

(2) sh4al_dsp_knl_???.lib
(3) sh4al_opttmr_???.lib
(4) sh4al_cache_???.lib

(5) hiknl_???.lib

Section5 Configuration

Rev.6.00 369
REJ10B0060-0600

Table 5.7 Linkage Priority of the Kernel Library (HI7700/4) (cont.)

CPU Core

DSP-Standby
Control Function

Optimized timer
Driver Function

Linkage Priority

Unused Unused (1) sh4al_dsp_knl_???.lib

(2) shx2_cache_???.lib

(3) hiknl_???.lib

SH4AL-
DSP (with
extended
function)

 Used (1) sh4al_dsp_knl_???.lib

(2) sh4al_opttmr_???.lib

(3) shx2_cache_???.lib

(4) hiknl_???.lib

 Used Unused (1) sh4al_dspstby_???.lib

(2) sh4al_dsp_knl_???.lib

(3) shx2_cache_???.lib

(4) hiknl_???.lib

 Used (1) sh4al_dspstby_???.lib

(2) sh4al_dsp_knl_???.lib

(3) sh4al_opttmr_???.lib

(4) shx2_cache_???.lib

(5) hiknl_???.lib

The following kernel libraries are used to support the debugger and usually not used.

• hiexpand_???.lib

• dsp_expand_???.lib

• sh4al_dsp_expand_???.lib

Note: The 7708_cache_???.lib library is not dedicated for the SH7708; it is used for all SH-3

and SH3-DSP series.

Section5 Configuration

Rev.6.00 370
REJ10B0060-0600

5.9.3 HI7750/4

Table 5.8 lists the linkage priority of the HI7750/4 kernel library.

Table 5.8 Linkage Priority of the Kernel Library (HI7750/4)

CPU Core Linkage Priority

SH-4 (1) 7750_cache_???.lib

(2) hiknl_???.lib

SH-4A (without extended function) (1) sh4a_cache_???.lib

(2) hiknl_???.lib

SH-4A (with extended function) (1) shx2_cache_???.lib

(2) hiknl_???.lib

The following kernel library is used to support the debugger and usually not used.

• hiexpand_???.lib

Note: The 7750_cache_???.lib library is not dedicated for the SH7750; it is used for all SH-4

series.

Section5 Configuration

Rev.6.00 371
REJ10B0060-0600

5.10 Section Configuration
The allocation address of each module is determined at the time of linkage regardless of the
linkage methods. A module is allocated in section units.

The sections are described here.

Table 5.9 lists the section names for the supplied files included with the product.

The first letter in a section name gives the section attribute.

P Attribute: Program sections, which can be located in a ROM.

C Attribute: Constant sections, which can be located in a ROM.

B Attribute: Non-initialized data sections, which must be located in a RAM.

D and R Attribute: D attribute is an initialized data section, which can be located in a ROM.
When locating a D-attribute section in a ROM, the contents of the section must be copied to a
RAM before executing the program so as to enable the contents to be treated as variables. To be
specific, the following procedures are required:

• Create an R-attribute section with the same size as the D-attribute section by using the ROM
support function provided by the optimized linkage editor. Allocate the R-attribute section
to a RAM.

• Create a program for copying the contents of the D-attribute section to the R-attribute section
and execute it at program initiation (usually a CPU initialization subroutine).

Section5 Configuration

Rev.6.00 372
REJ10B0060-0600

Table 5.9 Section Names

Section
Name

File Name

Description

Allocation to
Non-Cacheable
Area

P_hiknl Kernel library *1 Kernel program Not necessary
P_hireset Kernel initialization process Not necessary
P_hiknl_P2 *4 Part of cache operation Necessary
P_hiexpent nnnn_expent.src *2

kernel_exp.src *3
Kernel interrupt or exception entry/exit
processing routine

Not necessary

P_hiintdwn nnnn_intdwn.src *2

kernel_exp.src *3
Undefined kernel interrupt/exception
analysis process

Not necessary

C_hidef kernel_def.c Definition information on the kernel side Not necessary
C_hivct CPU vector table , Interrupt handler or CPU

exception handler definition information
Not necessary *7

C_hitrp *2 CPU exception handler definition
information for TRAPA

Not necessary

C_hibase Service call interface information Not necessary
B_hidef *5 Kernel work area Not necessary
C_hisysmt kernel_cfg.c Configuration information on the kernel

environment side
Not necessary

C_hicfg Configuration information other than
C_hisysmt on the kernel environment side

Not necessary

B_hivct *6 CPU vector table Not necessary
B_hiwrk Kernel work area Not necessary
B_hicfg *5 Kernel work area Not necessary
B_himpl Variable-/fixed-size memory pool area Not necessary
B_hidystk Dynamic stack Not necessary
B_histstk Static stack Not necessary
B_hiirqstk Interrupt handler and time event handler

stack
Not necessary

B_hitrceml DX emulator trace (tool trace) area Not necessary
B_hitrcbuf DX target trace buffer Not necessary
P_hisysdwn nnnn_sysdwn.c Sample system down routine Not necessary
P_hicpuasm nnnn_cpuasm.src Sample CPU initialization routine *8
P_hicpuini nnnn_cpuini.c Sample CPU initialization subroutine Not necessary
P_hitmrdrv nnnn_tmrdrv.c Sample timer driver Not necessary
Determined
by the user

Applications ---

Notes: *1 See section 5.9, Kernel Libraries.
 *2 Only in the HI7700/4 and HI7750/4
 *3 Only in the HI7000/4

 *4 Only for sh4al_cache_???.lib and shx2_cache_???.lib in the HI7700/4 and
sh4a_cache_???.lib and shx2_cache_???.lib in the HI7750/4.

 *5 When the fixed-size memory pool is created while CFG_MPFMANAGE is selected
through the configurator or when the variable-size memory pool with the
VTA_UNFRAGMENT is created while CFG_NEWMPL is selected.

 *6 Only when CFG_VCTRAM is selected and the OS is the HI7000/4

Section5 Configuration

Rev.6.00 373
REJ10B0060-0600

 *7 Allocate the section to address 0 when the reset vector is specified through the
configurator in the HI7000/4. Also refer to section 4.11.2, Defining CPU Initialization
Routines in HI7000/4.

 *8 Allocate the area to the CPU reset vector address (H'a0000000 in the P2 area) in the
HI7700/4 and HI7750/4.

5.11 Settings Common to All Projects

5.11.1 CPU Options for the Compiler and Assembler

The cpu option for the compiler and the assembler depends on the microcomputer in use. In
particular, the correct CPU option must be specified for compilation of the files indicated in
table 5.10 below.

Table 5.10 CPU Options

Kernel CPU in Use Target Source File CPU Option

HI7000/4 SH-2A,

SH2A-FPU

1. kernel_def.c (this file is included inmix and def
projects)

2. kernel_cfg.c (this file is included in mix and cfg
projects)

3. kernel_exp.src

4. All files that use service calls when "Only for
service call" is chosen as CFG_TBR.

SH2A or
SH2AFPU

HI7700/4 SH4AL-DSP SH4ALDSP

HI7750/4 SH-4A

1. kernel_def.c (this file is included in mix and def
projects)

2. kernel_cfg.c (this file is included in mix and cfg
projects)

3. The source file which uses a cache support
service call

SH4A

5.11.2 GBR Option of Compiler (Compiler Package V.7.1 or Later)

The GBR intrinsic function of compiler is used in the sample timer driver for some devices.
Specify "gbr=user", when you use these sample timer drivers. The sample timer drivers which
use the GBR intrinsic function in each kernel version at this manual creation time are shown
below.

• HI7000/4 V.2.02: All sample timer drivers other than SH72060 and SH7618
• HI7700/4 V.2.02: All sample timer drivers other than SH7290, SH7318, SH7641, and

SH7343
• HI7700/4 V.2.02: All sample timer drivers other than SH7760, SH7770, and SH7785

Section5 Configuration

Rev.6.00 374
REJ10B0060-0600

5.11.3 PACK Option and #pragma pack of Compiler (Compiler Package V.8 or
Later)

The structure parameters to be passed to the kernel must be aligned with the same boundary
alignment value as that for the members. To achieve this, #pragma pack 4 is specified in the
definition of the structure type in the standard header files (itron.h and kernel.h)

5.11.4 Include Directory for Compiler and Assembler

As the standard header files are stored in the hihead folder, specify the hihead folder as the
include directory for usual operation.

For kernel_def.c and kernel_cfg.c, specify the hisys folder as the include directory.

5.11.5 When SH2A-FPU or SH-4 or SH-4A is Used

Appendix G, Notes on FPU of SH2A-FPU, SH-4, SH4A also has the description about a
compiler option. When you do not use an FPU function, please be sure to refer this.

5.11.6 TBR Option of Compiler (Compiler Package V.9 or Later)

The TBR option is only for SH-2A and SH2A-FPU.

When "Only for service call" is chosen as CFG_TBR, the kernel initializes the TBR register.
The application must not modify TBR. For this reason, the TBR option and #pragma tbr must
not be used.

Section5 Configuration

Rev.6.00 375
REJ10B0060-0600

5.12 Build for Whole Linkage (mix)

5.12.1 Adding Files to a Project

Table 5.11 lists the source program sample files to be added to the project. The sample project
file already contains the files shown in this table.

Table 5.11 Source Program Files Added to Project (mix)

File Name Description Notes

kernel_def.c *1 Kernel side configuration file Mandatory

kernel_cfg.c *1 Kernel environment side
configuration file

Mandatory

nnnn_sysdwn.c *1 System down routine Mandatory

nnnn_expent.src *1 *2 Interrupt or exception entry/exit
processing routine

Mandatory

nnnn_intdwn.src *1 *2 Undefined interrupt detailed
information acquisition process

Mandatory

kernel_exp_src *1 *3 Interrupt or exception processing
routine

Mandatory

nnnn_cpuasm.src *1,
nnnn_cpuini.c *1

CPU initialization routine Mandatory for executing
by reset

nnnn_tmrdrv.c *1 Standard timer driver When using optimized
timer driver in HI7700/4,
do not include this

task.c *1 Sample task

Application files ⎯

Notes: 1. These files are in the shnnnn\src or shnnnn\project\src folder.
 2. Only in the HI7700/4 and HI7750/4

 3. Only in the HI7000/4

5.12.2 Defining Endian

In the supplied sample project for the microcomputers that support little endian, the endian
should be selected in the HEW build configuration. Select the build configuration as shown in
figure 5.10.

Section5 Configuration

Rev.6.00 376
REJ10B0060-0600

Figure 5.10 Selection of Endian

5.12.3 Setting Optimized Linkage Editor Options

(1) [Input] Category, [Library files]

Figure 5.11 Optimized Linkage Editor [Input] Category, [Library files]

Be sure to specify necessary libraries as described in 5.9, Kernel Libraries. Also, specify
application libraries as required.

Section5 Configuration

Rev.6.00 377
REJ10B0060-0600

(2) [Input] Category, [Defines]

Figure 5.12 Optimized Linkage Editor [Input] Category, [Defines]

In the sample file (nnnn_cpuasm.src) for the HI7700/4 and the HI7750/4, the following symbols
are externally referred to, so define them here.

• __kernel_pon_sp: Initial stack pointer used for power-on reset
• __kernel_man_sp: Initial stack pointer used for manual reset

Section5 Configuration

Rev.6.00 378
REJ10B0060-0600

(3) [Section] Category

Figure 5.13 Optimized Linkage Editor [Section]

Specifies the allocation addresses of each section. Specify the allocation addresses for the
sections in the input files according to the target hardware.

Basically, specify addresses for all sections in the input files. The optimized linkage editor
automatically places all sections without overt address specifications after the last section in the
input files with such a specification. The resulting arrangement of sections may not produce the
order expected, and the program may not work properly. In this case, the optimized linkage
editor reports the following warning message (example in case P_Task1 section is not specified).

 L1120 (W) Section address is not assigned to "P_Task1"

Specifying a section name that does not actually appear in the input files also produces a
warning message, but the optimized linkage editor continues linking. In this case, the optimized
linkage editor reports the following warning message (example in case C section does not exist).

 L1100 (W) Cannot find "C" specified in option "start"

The default settings, for example, sometimes produce such warnings if the application files do
not have P, C, D, B, or R sections because these sections are not used in the linked application
object, but these warnings in no way affect use of the resulting load module.

Section5 Configuration

Rev.6.00 379
REJ10B0060-0600

Memory Allocation of the HI7000/4:

The vector table (C_hivct section) must be specified. Be sure to allocate the C_hivct section
to address 0 when the reset vector is defined through the configurator.

Memory Allocation of the HI7700/4 and the HI7750/4:

Allocate the section (P_hicpuasm) of the CPU initialization routine to H'a0000000 (reset
address).

5.12.4 Executing a Build

The load module is created by executing a build after adding application files to the project and
setting the compiler, assembler, and optimized linkage editor options. To execute a build,
choose the [Build] or [Build All] command from the Build menu as shown in figure 5.14.

Figure 5.14 Build Execution

Section5 Configuration

Rev.6.00 380
REJ10B0060-0600

5.13 Build for Separate Linkage: Kernel Side (def)

5.13.1 Adding Files to a Project

Table 5.12 lists the source program files to be added to the project. The sample project file
already contains the files shown in this table.

Table 5.12 Source Program Files to be Added to the Project (def)

File Name Description Notes

kernel_def.c *1 Kernel side configuration file Mandatory

nnnn_sysdwn.c *1 System down routine Mandatory

nnnn_expent.src *1 *2 Interrupt or exception entry/exit routine Mandatory

nnnn_intdwn.src *1 *2 Undefined interrupt detailed information
acquisition process

Mandatory

kernel_exp_src *1 *3 Interrupt or exception processing routine Mandatory

nnnn_cpuasm.src *1,
nnnn_cpuini.c *1

CPU initialization routine Mandatory for
executing by reset

\nnnn_tmrdrv.c *1 Standard timer driver When using
optimized timer
driver in HI7700/4,
do not include this

Application files ⎯

Notes: 1. These files are in the shnnnn\src or shnnnn\project\src folder.
 2. Only in the HI7700/4 and HI7750/4
 3. Only in the HI7000/4

5.13.2 Defining Endian (HI7700/4 and HI7750/4)

The endian in the supplied sample project is set by selecting it in the build configuration. Select
the build configuration as shown in figure 5.10.

Section5 Configuration

Rev.6.00 381
REJ10B0060-0600

5.13.3 Setting Optimized Linkage Editor Options

(1) [Input] Category, [Library files]

Figure 5.15 Optimized Linkage Editor [Input] Category, [Library files]

Be sure to specify necessary libraries as described in 5.9, Kernel Libraries. Also, specify
application libraries as required.

Section5 Configuration

Rev.6.00 382
REJ10B0060-0600

(2) [Input] Category, [Defines]

Figure 5.16 Optimized Linkage Editor [Input] Category, [Defines]

The following symbol address is defined.

• __kernel_sysmt: Kernel environment information

As this kernel environment information is included in the kernel environment load module (cfg),
the kernel environment information allocation address must therefore be forcibly defined.
__kernel_sysmt is the start address of the C_hisysmt section in the kernel environment side
configuration file (kernel_cfg.c). When creating the kernel environment side load module, the
C_hisysmt section must be allocated to the address defined here.

In the sample file (nnnn_cpuasm.src) for the HI7700/4 and the HI7750/4, the following symbols
are externally referred to, so define them here.

• __kernel_pon_sp: Initial stack pointer used for power-on reset
• __kernel_man_sp: Initial stack pointer used for manual reset

Section5 Configuration

Rev.6.00 383
REJ10B0060-0600

(3) [Section] Category

Figure 5.17 Optimized Linkage Editor [Section]

Specifies the allocation addresses of each section. Specify the allocation addresses for the
sections in the input files according to the target hardware.

The __kernel_cnfgtbl address (the start address of service call interface data C_hibase section)
must be defined during the kernel environment load module creation (cfg). The defined address
and the allocation address of the C_hibase section must be the same.

Basically, specify addresses for all sections in the input files. The optimized linkage editor
automatically places all sections without overt address specifications after the last section in the
input files with such a specification. The resulting arrangement of sections may not produce the
order expected, and the program may not work properly. In this case, the optimized linkage
editor reports the following warning message (example in case P_Task1 section is not specified).

 L1120 (W) Section address is not assigned to "P_Task1"

Specifying a section name that does not actually appear in the input files also produces a
warning message, but the optimized linkage editor continues linking. In this case, the optimized
linkage editor reports the following warning message (example in case C section does not exist).

 L1100 (W) Cannot find "C" specified in option "start"

The default settings, for example, sometimes produce such warnings if the application files do
not have P, C, D, B, or R sections because these sections are not used in the linked application
object, but these warnings in no way affect use of the resulting load module.

Section5 Configuration

Rev.6.00 384
REJ10B0060-0600

Memory Allocation of the HI7000/4:

The vector table (C_hivct section) must be specified. Be sure to allocate the C_hivct section
to address 0 when the reset vector is defined through the configurator.

Memory Allocation of the HI7700/4 and the HI7750/4:

Allocate the section (P_hicpuasm) of the CPU initialization routine to H'a0000000 (reset
address).

5.13.4 Executing a Build

The load module is created by executing a build after adding application files to the project and
setting the compiler, assembler, and optimized linkage editor options. To execute a build,
choose the [Build] or [Build All] command from the Build menu as shown in figure 5.14.

Section5 Configuration

Rev.6.00 385
REJ10B0060-0600

5.14 Build at Separate Linkage: Kernel Environment Side (cfg)
Open the sample workspace (hios.hws) and select the project file (cfg) appropriate to the
microcomputer to be used.

5.14.1 Adding Files to a Project

Table 5.13 lists the source program files to be added to the project. The sample project file
already contains the files shown in this table.

Table 5.13 Source Program Files to be Recorded in the Project (cfg)

File Name Description Notes

kernel_cfg.c * Kernel environment side configuration file Mandatory

task.c * Sample task

Application files ⎯

Note: * These files are in the shnnnn\src or shnnnn\project\src folders.

5.14.2 Defining Endian (HI7700/4 and HI7750/4)

The endian in the supplied sample project is set by selecting it in the build configuration. Select
the build configuration as shown in figure 5.10.

Section5 Configuration

Rev.6.00 386
REJ10B0060-0600

5.14.3 Setting Optimized Linkage Editor Options

(1) [Input] Category, [Defines]

Figure 5.18 Optimized Linkage Editor [Input] Category, [Defines]

The following symbol address is defined.

• __kernel_cnfgtbl: Service call interface data

As this service call interface data is included in the kernel load module (def), the service call
interface data allocation addresses must therefore be forcibly defined. __kernel_cnfgtbl is the
start address of the C_hibase section in the kernel side configuration file (kernel_def.c).

Section5 Configuration

Rev.6.00 387
REJ10B0060-0600

(2) [Section] Category

Figure 5.19 Optimized Linkage Editor [Section]

Specifies the allocation addresses of each section. Specify the allocation addresses for the
sections in the input files according to the target hardware.

The __kernel_sysmt address (the start address of kernel environment information C_hisysmt
section) must be defined in the kernel load module creation (def). The defined address and the
allocation address of the C_hisysmt section must be the same.

Basically, specify addresses for all sections in the input files. The optimized linkage editor
automatically places all sections without overt address specifications after the last section in the
input files with such a specification. The resulting arrangement of sections may not produce the
order expected, and the program may not work properly. In this case, the optimized linkage
editor reports the following warning message (example in case P_Task1 section is not specified).

 L1120 (W) Section address is not assigned to "P_Task1"

Specifying a section name that does not actually appear in the input files also produces a
warning message, but the optimized linkage editor continues linking. In this case, the optimized
linkage editor reports the following warning message (example in case C section does not exist).

 L1100 (W) Cannot find "C" specified in option "start"

The default settings, for example, sometimes produce such warnings if the application files do
not have P, C, D, B, or R sections because these sections are not used in the linked application
object, but these warnings in no way affect use of the resulting load module.

Section5 Configuration

Rev.6.00 388
REJ10B0060-0600

5.14.4 Executing a Build

The load module is created by executing a build after adding application files to the project and
setting the compiler, assembler, and optimized linkage editor options. To execute a build,
choose the [Build] or [Build All] command from the Build menu as shown in figure 5.14.

5.15 Application Load Module Creation
Application files that are specified in the configurator and that do not have external application
names (such as task symbols) can independently create a load module. Conversely, it is possible
to include all application files in a whole load module, kernel load module, or kernel
environment load module. In this case, no application load module is required.

To create a new load module with applications alone, see the details of the procedure for adding
a new project into the sample workspace (hios.hws) or creating a new workspace, as given in the
HEW User's Manual or online help.

Please note the following points for linkage:

(1) Definition of __kernel cnfgtbl address

The following symbol address must be defined:

• __kernel cnfgtbl: Service call interface data

As this service call interface data is included in the kernel load module (mix or def), the service
call interface data allocation address must therefore be forcibly defined. __kernel_cnfgtbl is the
start address of the C_hibase section in the kernel side configuration file (kernel_def.c).

Rev.6.00 389
REJ10B0060-0600

Appendix A Service Call List
No. Service Call C-Language API Function

 Task Management Function

cre_tsk ER ercd= cre_tsk (ID tskid, T_CTSK *pk_ctsk); 1

icre_tsk ER ercd= icre_tsk (ID tskid, T_CTSK *pk_ctsk);

Create Task Using Dynamic Stack

vscr_tsk ER ercd= vscr_tsk (ID tskid, T_CTSK *pk_ctsk);2

ivscr_tsk ER ercd= ivscr_tsk (ID tskid, T_CTSK *pk_ctsk);

Create Task Using Static Stack

acre_tsk ER_ID tskid= acre_tsk (T_CTSK *pk_ctsk); 3

iacre_tsk ER_ID tskid= iacre_tsk (T_CTSK *pk_ctsk);

Create Task and Assign Task ID
Automatically

4 del_tsk ER ercd= del_tsk (ID tskid); Delete Task

act_tsk ER ercd= act_tsk (ID tskid); 5

iact_tsk ER ercd= iact_tsk (ID tskid);

Initiate Task

can_act ER_UINT actcnt= can_act (ID tskid); 6

ican_act ER_UINT actcnt= ican_act (ID tskid);

Cancel Task Initiation Request

sta_tsk ER ercd= sta_tsk (ID tskid, VP_INT stacd); 7

ista_tsk ER ercd= ista_tsk (ID tskid, VP_INT stacd);

Start Task (Start Code Specified)

8 ext_tsk void ext_tsk (void); Exit Current Task

9 exd_tsk void exd_tsk (void); Exit and Delete Current Task

10 ter_tsk ER ercd= ter_tsk (ID tskid); Terminate Task

chg_pri ER ercd= chg_pri (ID tskid, PRI tskpri); 11

ichg_pri ER ercd= ichg_pri (ID tskid, PRI tskpri);

Change Task Priority

get_pri ER ercd= get_pri (ID tskid, PRI *p_tskpri); 12

iget_pri ER ercd= iget_pri (ID tskid, PRI *p_tskpri);

Refer to Task Priority

ref_tsk ER ercd= ref_tsk (ID tskid, T_RTSK *pk_rtsk); 13

iref_tsk ER ercd= iref_tsk (ID tskid, T_RTSK *pk_rtsk);

Refer to Task State

ref_tst ER ercd= ref_tst (ID tskid T_RTST *pk_rtst); 14

iref_tst ER ercd= iref_tst (ID tskid T_RTST *pk_rtst);

Refer to Task State (simple version)

15 vchg_tmd ER ercd= vchg_tmd (UINT tmd); Change Task Execution Mode

Appendix A Service Call List

Rev.6.00 390
REJ10B0060-0600

No. Service
Call

C-Language API Function

 Task Synchronous Management Function

16 slp_tsk ER ercd= slp_tsk (void); Sleep Task

17 tslp_tsk ER ercd= tslp_tsk (TMO tmout); Sleep Task with Timeout

wup_tsk ER ercd= wup_tsk (ID tskid); 18

iwup_tsk ER ercd= iwup_tsk (ID tskid);

Wakeup Task

can_wup ER UINT wupcnt= can_wup (ID tskid); 19

ican_wup ER UINT wupcnt= ican_wup (ID tskid);

Cancel Wakeup Task

rel_wai ER ercd= rel_wai (ID tskid); 20

irel_wai ER ercd= irel_wai (ID tskid);

Release WAITING State Forcibly

sus_tsk ER ercd= sus_tsk (ID tskid); 21

isus_tsk ER ercd= isus_tsk (ID tskid);

Shift to SUSPENDED State

rsm_tsk ER ercd= rsm_tsk (ID tskid); 22

irsm_tsk ER ercd= irsm_tsk (ID tskid);

Resume Task from SUSPENDED
State

frsm_tsk ER ercd= frsm_tsk (ID tskid); 23

ifrsm_tsk ER ercd= ifrsm_tsk (ID tskid);

Resume Task from SUSPENDED
State Forcibly

24 dly_tsk ER ercd= dly_tsk (RELTIM dlytim); Delay Task

vset_tfl ER ercd= vset_tfl (ID tskid, UINT setptn); 25

ivset_tfl ER ercd= ivset_tfl (ID tskid, UINT setptn);

Set Task Event Flag

vclr_tfl ER ercd= vclr_tfl (ID tskid, UINT clrptn); 26

ivclr_tfl ER ercd= ivclr_tfl (ID tskid, UINT clrptn);

Clear Task Event Flag

27 vwai_tfl ER ercd= vwai_tfl (UINT waiptn, UINT *p_tflptn); Wait Task Event Flag

28 vpol_tfl ER ercd= vpol_tfl (UINT waiptn, UINT *p_tflptn); Poll and Wait Task Event Flag

29 vtwai_tfl ER ercd= vtwai_tfl (UINT waiptn, UINT *p_tflptn, TMO
tmout);

Wait Task Event Flag with Timeout

Appendix A Service Call List

Rev.6.00 391
REJ10B0060-0600

No. Service
Call

C-Language API Function

 Task Exception Management Function

def_tex ER ercd= def_tex (ID tskid, T_DTEX *pk_dtex); 30

idef_tex ER ercd= idef_tex (ID tskid, T_DTEX *pk_dtex);

Define Task Exception Processing
Routine

ras_tex ER ercd= ras_tex (ID tskid, TEXPTN rasptn); 31

iras_tex ER ercd= iras_tex (ID tskid, TEXPTN rasptn);

Request Task Exception Processing

32 dis_tex ER ercd= dis_tex (void); Disable Task Exception Processing

33 ena_tex ER ercd= ena_tex (void); Enable Task Exception Processing

34 sns_tex BOOL state= sns_tex (void); Refer to Task Exception Processing
Disabled State

ref_tex ER ercd= ref_tex (ID tskid, T_RTEX *pk_rtex); 35

iref_tex ER ercd= iref_tex (ID tskid, T_RTEX *pk_rtex);

Refer to Task Exception Processing
State

 Synchronization and Communication Function
Semaphore

cre_sem ER ercd= cre_sem (ID semid, T_CSEM *pk_csem); 36

icre_sem ER ercd= icre_sem (ID semid, T_CSEM *pk_csem);

Create Semaphore

acre_sem ER_ID semid= acre_sem (T_CSEM *pk_csem); 37

iacre_sem ER_ID semid= iacre_sem (T_CSEM *pk_csem);

Create Semaphore and Assign
Semaphore ID Automatically

38 del_sem ER ercd= del_sem (ID semid); Delete Semaphore

sig_sem ER ercd= sig_sem (ID semid); 39

isig_sem ER ercd= isig_sem (ID semid);

Return Semaphore Resource

40 wai_sem ER ercd= wai_sem (ID semid); Wait on Semaphore

pol_sem ER ercd= pol_sem (ID semid); 41

ipol_sem ER ercd= ipol_sem (ID semid);

Poll and Wait on Semaphore

42 twai_sem ER ercd= twai_sem (ID semid, TMO tmout); Wait on Semaphore with Timeout

ref_sem ER ercd= ref_sem (ID semid, T_RSEM *pk_rsem); 43

iref_sem ER ercd= iref_sem (ID semid, T_RSEM *pk_rsem);

Refer to Semaphore State

Appendix A Service Call List

Rev.6.00 392
REJ10B0060-0600

No. Service
Call

C-Language API Function

Event Flag

cre_flg ER ercd= cre_flg (ID flgid, T_CFLG *pk_cflg); 44

icre_flg ER ercd= icre_flg (ID flgid, T_CFLG *pk_cflg);

Create Event Flag

acre_flg ER_ID flgid= acre_flg (T_CFLG *pk_cflg); 45

iacre_flg ER_ID flgid= iacre_flg (T_CFLG *pk_cflg);

Create Event Flag and Assign
Event Flag ID Automatically

46 del_flg ER ercd= del_flg (ID flgid); Delete Event Flag

set_flg ER ercd= set_flg (ID flgid, FLGPTN setptn); 47

iset_flg ER ercd= iset_flg (ID flgid, FLGPTN setptn);

Set Event Flag

clr_flg ER ercd= clr_flg (ID flgid, FLGPTN clrptn); 48

iclr_flg ER ercd= iclr_flg (ID flgid, FLGPTN clrptn);

Clear Event Flag

49 wai_flg ER ercd= wai_flg (ID flgid, FLGPTN waiptn, MODE
wfmode, FLGPTN *p_flgptn);

Wait for Event Flag Setting

pol_flg ER ercd= pol_flg (ID flgid, FLGPTN waiptn, MODE
wfmode, FLGPTN *p_flgptn);

50

ipol_flg ER ercd= ipol_flg (ID flgid, FLGPTN waiptn, MODE
wfmode, FLGPTN *p_flgptn);

Poll and Wait for Event Flag Setting

51 twai_flg ER ercd= twai_flg (ID flgid, FLGPTN waiptn, MODE
wfmode, FLGPTN *p_flgptn, TMO tmout);

Wait for Event Flag Setting with
Timeout

ref_flg ER ercd= ref_flg (ID flgid, T_RFLG *pk_rflg); 52

iref_flg ER ercd= iref_flg (ID flgid, T_RFLG *pk_rflg);

Refer to Event Flag State

Data Queue

cre_dtq ER ercd= cre_dtq (ID dtqid, T_CDTQ *pk_cdtq); 53

icre_dtq ER ercd= icre_dtq (ID dtqid, T_CDTQ *pk_cdtq);

Create Data Queue

acre_dtq ER_ID dtqid= acre_dtq (T_CDTQ *pk_cdtq); 54

iacre_dtq ER_ID dtqid= iacre_dtq (T_CDTQ *pk_cdtq);

Create Data Queue and Assign
Data Queue ID Automatically

55 del_dtq ER ercd= del_dtq (ID dtqid); Delete Data Queue

56 snd_dtq ER ercd= snd_dtq (ID dtqid, VP_INT data); Send Data to Data Queue

psnd_dtq ER ercd= psnd_dtq (ID dtqid, VP_INT data); 57

ipsnd_dtq ER ercd= ipsnd_dtq (ID dtqid, VP_INT data);

Poll and Send Data to Data Queue

Appendix A Service Call List

Rev.6.00 393
REJ10B0060-0600

No. Service Call C-Language API Function

58 tsnd_dtq ER ercd= tsnd_dtq (ID dtqid, VP_INT data, TMO
tmout);

Send Data to Data Queue with
Timeout

fsnd_dtq ER ercd= fsnd_dtq (ID dtqid, VP_INT data); 59

ifsnd_dtq ER ercd= ifsnd_dtq (ID dtqid, VP_INT data);

Send Data to Data Queue Forcibly

60 rcv_dtq ER ercd= rcv_dtq (ID dtqid, VP_INT *p_data); Receive Data from Data Queue

61 prcv_dtq ER ercd= prcv_dtq (ID dtqid, VP_INT *p_data); Poll and Receive Data from Data
Queue

62 trcv_dtq ER ercd= trcv_dtq (ID dtqid, VP_INT *p_data, TMO
tmout);

Receive Data from Data Queue with
Timeout

ref_dtq ER ercd= ref_dtq (ID dtqid, T_RDTQ *pk_rdtq); 63

iref_dtq ER ercd= iref_dtq (ID dtqid, T_RDTQ *pk_rdtq);

Refer to Data Queue State

Mailbox

cre_mbx ER ercd= cre_mbx (ID mbxid, T_CMBX *pk_cmbx);64

icre_mbx ER ercd= icre_mbx (ID mbxid, T_CMBX *pk_cmbx);

Create Mailbox

acre_mbx ER_ID mbxid= acre_mbx (T_CMBX *pk_cmbx); 65

iacre_mbx ER_ID mbxid= iacre_mbx (T_CMBX *pk_cmbx);

Create Mailbox and Assign Mailbox
ID Automatically

66 del_mbx ER ercd= del_mbx (ID mbxid); Delete Mailbox

snd_mbx ER ercd= snd_mbx (ID mbxid, T_MSG *pk_msg); 67

isnd_mbx ER ercd= isnd_mbx (ID mbxid, T_MSG *pk_msg);

Send Message to Mailbox

68 rcv_mbx ER ercd= rcv_mbx (ID mbxid, T_MSG **ppk_msg); Receive Message from Mailbox

prcv_mbx ER ercd= prcv_mbx (ID mbxid, T_MSG **ppk_msg);69

iprcv_mbx ER ercd= iprcv_mbx (ID mbxid, T_MSG **ppk_msg);

Poll and Receive Message from
Mailbox

70 trcv_mbx ER ercd= trcv_mbx (ID mbxid, T_MSG **ppk_msg,
TMO tmout);

Receive Message from Mailbox with
Timeout

ref_mbx ER ercd= ref_mbx (ID mbxid, T_RMBX *pk_rmbx);71

iref_mbx ER ercd= iref_mbx (ID mbxid, T_RMBX *pk_rmbx);

Refer to Mailbox State

Appendix A Service Call List

Rev.6.00 394
REJ10B0060-0600

No. Service
Call

C-Language API Function

 Extended Synchronization and Communication Function
Mutex

72 cre_mtx ER ercd= cre_mtx (ID mtxid, T_CMTX *pk_cmtx); Create Mutex

73 acre_mtx ER_ID mtxid= acre_mtx (T_CMTX *pk_cmtx); Create Mutex and Assign Mutex ID
Automatically

74 del_mtx ER ercd= del_mtx (ID mtxid); Delete Mutex

75 loc_mtx ER ercd= loc_mtx (ID mtxid); Lock Mutex Resource

76 ploc_mtx ER ercd= ploc_mtx (ID mtxid); Poll and Lock Mutex Resource

77 tloc_mtx ER ercd= tloc_mtx (ID mtxid, TMO tmout); Lock Mutex Resource with Timeout

78 unl_mtx ER ercd= unl_mtx (ID mtxid); Unlock Mutex Resource

79 ref_mtx ER ercd= ref_mtx (ID mtxid, T_RMTX *pk_rmtx); Refer to Mutex State

Message Buffer
cre_mbf ER ercd= cre_mbf (ID mbfid, T_CMBF *pk_cmbf); 80

icre_mbf ER ercd= icre_mbf (ID mbfid, T_CMBF *pk_cmbf);

Create Message Buffer

acre_mbf ER_ID mbfid= acre_mbf (T_CMBF *pk_cmbf); 81

iacre_mbf ER_ID mbfid= iacre_mbf (T_CMBF *pk_cmbf);

Create Message Buffer and Assign
Message Buffer ID Automatically

82 del_mbf ER ercd= del_mbf (ID mbfid); Delete Message Buffer

83 snd_mbf ER ercd= snd_mbf (ID mbfid, VP msg, UINT msgsz); Send Message to Message Buffer

psnd_mbf ER ercd= psnd_mbf (ID mbfid, VP msg, UINT msgsz); 84

ipsnd_mbf ER ercd= ipsnd_mbf (ID mbfid, VP msg, UINT msgsz);

Poll and Send Message to
Message Buffer

85 tsnd_mbf ER ercd= tsnd_mbf (ID mbfid, VP msg, UINT msgsz,
TMO tmout);

Send Message to Message Buffer
with Timeout

86 rcv_mbf ER_UINT msgsz= rcv_mbf (ID mbfid, VP msg); Receive Message from Message
Buffer

87 prcv_mbf ER_UINT msgsz= prcv_mbf (ID mbfid, VP msg); Poll and Receive Message from
Message Buffer

88 trcv_mbf ER_UINT msgsz= trcv_mbf (ID mbfid, VP msg, TMO
tmout);

Receive Message from Message
Buffer with Timeout

ref_mbf ER ercd= ref_mbf (ID mbfid, T_RMBF *pk_rmbf); 89

iref_mbf ER ercd= iref_mbf (ID mbfid, T_RMBF *pk_rmbf);

Refer to Message Buffer State

Appendix A Service Call List

Rev.6.00 395
REJ10B0060-0600

No. Service
Call

C-Language API Function

 Memory Pool Management Function
Fixed-Size Memory Pool

cre_mpf ER ercd= cre_mpf (ID mpfid, T_CMPF *pk_cmpf); 90

icre_mpf ER ercd= icre_mpf (ID mpfid, T_CMPF *pk_cmpf);

Create Fixed-Size Memory Pool

acre_mpf ER_ID mpfid= acre_mpf (T_CMPF *pk_cmpf); 91

iacre_mpf ER_ID mpfid= iacre_mpf (T_CMPF *pk_cmpf);

Create Fixed-Size Memory Pool
and Assign Fixed-Size Memory
Pool ID Automatically

92 del_mpf ER ercd= del_mpf (ID mpfid); Delete Fixed-Size Memory Pool

93 get_mpf ER ercd= get_mpf (ID mpfid, VP *p_blk); Acquire Fixed-Size Memory Block

pget_mpf ER ercd= pget_mpf (ID mpfid, VP *p_blk); 94

ipget_mpf ER ercd= ipget_mpf (ID mpfid, VP *p_blk);

Poll and Acquire Fixed-size
Memory Block

95 tget_mpf ER ercd= tget_mpf (ID mpfid, VP *p_blk, TMO tmout); Acquire Fixed-Size Memory Block
with Timeout

rel_mpf ER ercd= rel_mpf (ID mpfid, VP blk); 96

irel_mpf ER ercd= irel_mpf (ID mpfid, VP blk);

Release Fixed-Size Memory Block

ref_mpf ER ercd= ref_mpf (ID mpfid, T_RMPF *pk_rmpf); 97

iref_mpf ER ercd= iref_mpf (ID mpfid, T_RMPF *pk_rmpf);

Refer to Fixed-Size Memory Pool
State

Variable-Size Memory Pool

cre_mpl ER ercd= cre_mpl (ID mplid, T_CMPL *pk_cmpl); 98

icre_mpl ER ercd= icre_mpl (ID mplid, T_CMPL *pk_cmpl);

Create Variable-Size Memory Pool

acre_mpl ER_ID mplid= acre_mpl (T_CMPL *pk_cmpl); 99

iacre_mpl ER_ID mplid= iacre_mpl (T_CMPL *pk_cmpl);

Create Variable-Size Memory Pool
and Assign Variable-Size Memory
Pool ID Automatically

100 del_mpl ER ercd= del_mpl (ID mplid); Delete Variable-Size Memory Pool

101 get_mpl ER ercd= get_mpl (ID mplid, UINT blksz, VP *p_blk); Acquire Variable-Size Memory
Block

pget_mpl ER ercd= pget_mpl (ID mplid, UINT blksz, VP *p_blk);102

ipget_mpl ER ercd= ipget_mpl (ID mplid, UINT blksz, VP *p_blk);

Poll and Acquire Variable-Size
Memory Block

103 tget_mpl ER ercd= tget_mpl (ID mplid, UINT blksz, VP *p_blk,
TMO tmout);

Acquire Variable-Size Memory
Block with Timeout

rel_mpl ER ercd= rel_mpl (ID mplid, VP blk); 104

irel_mpl ER ercd= irel_mpl (ID mplid, VP blk);

Release Variable-Size Memory
Block

ref_mpl ER ercd= ref_mpl (ID mplid, T_RMPL *pk_rmpl); 105

iref_mpl ER ercd= iref_mpl (ID mplid, T_RMPL *pk_rmpl);

Refer to Variable-Size Memory
Pool State

Appendix A Service Call List

Rev.6.00 396
REJ10B0060-0600

No. Service
Call

C-Language API Function

 Time Management Function
System Clock Management

set_tim ER ercd= set_tim (SYSTIM *p_systim); 106

iset_tim ER ercd= iset_tim (SYSTIM *p_systim);

Set System Clock

get_tim ER ercd= get_tim (SYSTIM *p_systim); 107

iget_tim ER ercd= iget_tim (SYSTIM *p_systim);

Get System Clock

108 isig_tim Included automatically by selecting CFG_TIMUSE Supply Time Tick

Cyclic Handler

cre_cyc ER ercd= cre_cyc (ID cycid, T_CCYC *pk_ccyc); 109

icre_cyc ER ercd= icre_cyc (ID cycid, T_CCYC *pk_ccyc);

Create Cyclic Handler

acre_cyc ER_ID cycid= acre_cyc (T_CCYC *pk_ccyc); 110

iacre_cyc ER_ID cycid= iacre_cyc (T_CCYC *pk_ccyc);

Create Cyclic Handler and Assign
Cyclic Handler ID Automatically

111 del_cyc ER ercd= del_cyc (ID cycid); Delete Cyclic Handler

sta_cyc ER ercd= sta_cyc (ID cycid); 112

ista_cyc ER ercd= ista_cyc (ID cycid);

Start Cyclic Handler

stp_cyc ER ercd= stp_cyc (ID cycid); 113

istp_cyc ER ercd= istp_cyc (ID cycid);

Stop Cyclic Handler

ref_cyc ER ercd= ref_cyc (ID cycid, T_RCYC *pk_rcyc); 114

iref_cyc ER ercd= iref_cyc (ID cycid, T_RCYC *pk_rcyc);

Refer to Cyclic Handler State

Alarm Handler

cre_alm ER ercd= cre_alm (ID almid, T_CALM *pk_calm); 115

icre_alm ER ercd= icre_alm (ID almid, T_CALM *pk_calm);

Create Alarm Handler

acre_alm ER_ID almid= acre_alm (T_CALM *pk_calm); 116

iacre_alm ER_ID almid= iacre_alm (T_CALM *pk_calm);

Create Alarm Handler and Assign
Alarm Handler ID Automatically

117 del_alm ER ercd= del_alm (ID almid); Delete Alarm Handler

sta_alm ER ercd= sta_alm (ID almid, RELTIM almtim); 118

ista_alm ER ercd= ista_alm (ID almid, RELTIM almtim);

Start Alarm Handler

stp_alm ER ercd= stp_alm (ID almid); 119

istp_alm ER ercd= istp_alm (ID almid);

Stop Alarm Handler

ref_alm ER ercd= ref_alm (ID almid, T_RALM *pk_ralm); 120

iref_alm ER ercd= iref_alm (ID almid, T_RALM *pk_ralm);

Refer to Alarm Handler State

Appendix A Service Call List

Rev.6.00 397
REJ10B0060-0600

No. Service
Call

C-Language API Function

Overrun Handler

121 def_ovr ER ercd= def_ovr (T_DOVR *pk_dovr); Define Overrun Handler

sta_ovr ER ercd= sta_ovr (ID tskid, OVRTIM ovrtim); 122

ista_ovr ER ercd= ista_ovr (ID tskid, OVRTIM ovrtim);

Start Overrun Handler Operation

stp_ovr ER ercd= stp_ovr (ID tskid); 123

istp_ovr ER ercd= istp_ovr (ID tskid);

Stop Overrun Handler Operation

ref_ovr ER ercd= ref_ovr (ID tskid, T_ROVR *pk_rovr); 124

iref_ovr ER ercd= iref_ovr (ID tskid, T_ROVR *pk_rovr);

Refer to Overrun Handler State

 System Status Management Function

rot_rdq ER ercd= rot_rdq (PRI tskpri); 125

irot_rdq ER ercd= irot_rdq (PRI tskpri);

Rotate Ready Queue

get_tid ER ercd= get_tid (ID *p_tskid); 126

iget_tid ER ercd= iget_tid (ID *p_tskid);

Refer to Task ID in RUNNING
State

loc_cpu ER ercd= loc_cpu (void); 127

iloc_cpu ER ercd= iloc_cpu (void);

Lock CPU

unl_cpu ER ercd= unl_cpu (void); 128

iunl_cpu ER ercd= iunl_cpu (void);

Unlock CPU

129 dis_dsp ER ercd= dis_dsp (void); Disable Dispatch

130 ena_dsp ER ercd= ena_dsp (void); Enable Dispatch

131 sns_ctx BOOL state= sns_ctx (void); Refer to Context

132 sns_loc BOOL state= sns_loc (void); Refer to CPU-Locked State

133 sns_dsp BOOL state= sns_dsp (void); Refer to Dispatch-Disabled State

134 sns_dpn BOOL state= sns_dpn (void); Refer to Dispatch-Pended State

Appendix A Service Call List

Rev.6.00 398
REJ10B0060-0600

No. Service
Call

C-Language API Function

vsta_knl void vsta_knl (void); 135

ivsta_knl void ivsta_knl (void);

Start Kernel

vsys_dwn void vsys_dwn (W type, ER ercd, VW inf1, VW inf2); 136

ivsys_dwn void ivsys_dwn (W type, ER ercd, VW inf1, VW inf2);

Terminate System

vget_trc ER ercd= vget_trc (VW para1, VW para2, VW para3, VW
para4);

137

ivget_trc ER ercd= ivget_trc (VW para1, VW para2, VW para3, VW
para4);

Acquire Trace Information

138 ivbgn_int ER ercd= ivbgn_int (UINT dintno); Acquire Start of Interrupt Handler
as Trace Information

139 ivend_int ER ercd= ivend_int (UINT dintno); Acquire End of Interrupt Handler
as Trace Information

 Interrupt Management Function

def_inh ER ercd= def_inh (INHNO inhno, T_DINH *pk_dinh); 140

idef_inh ER ercd= idef_inh (INHNO inhno, T_DINH *pk_dinh);

Define Interrupt Handler

chg_ims ER ercd= chg_ims (IMASK imask); 141

ichg_ims ER ercd= ichg_ims (IMASK imask);

Change Interrupt Mask

get_ims ER ercd= get_ims (IMASK *p_imask); 142

iget_ims ER ercd= iget_ims (IMASK *p_imask);

Refer to Interrupt Mask

 Service Call Management Function

def_svc ER ercd= def_svc (FN fncd, T_DSVC *pk_dsvc); 143

idef_svc ER ercd= idef_svc (FN fncd, T_DSVC *pk_dsvc);

Define Extended Service call
Routine

cal_svc ER_UINT ercd= cal_svc (FN fncd, ...); 144

ical_svc ER_UINT ercd= cal_svc (FN fncd, ...);

Extended Service call

Appendix A Service Call List

Rev.6.00 399
REJ10B0060-0600

No. Service
Call

C-Language API Function

 System Configuration Management Function

def_exc ER ercd= def_exc (EXCNO excno, T_DEXC *pk_dexc); 145

idef_exc ER ercd= idef_exc (EXCNO excno, T_DEXC *pk_dexc);

Define CPU Exception Handler

vdef_trp ER ercd= vdef_trp (UINT dtrpno, T_DTRP *pk_dtrp); 146

ivdef_trp ER ercd= ivdef_trp (UINT dtrpno, T_DTRP *pk_dtrp);

Define CPU Exception (TRAPA
Instruction Exception) Handler

ref_cfg ER ercd= ref_cfg (T_RCFG *pk_rcfg); 147

iref_cfg ER ercd= iref_cfg (T_RCFG *pk_rcfg);

Refer to Configuration
Information

ref_ver ER ercd= ref_ver (T_RVER *pk_rver); 148

iref_ver ER ercd= iref_ver (T_RVER *pk_rver);

Refer to Version Information

 Cache Support Function [HI7700/4:for SH-3 and SH3-DSP]

vini_cac void vini_cac (UW ccr_data, UW entnum, UW waynum); 149

ivini_cac void ivini_cac (UW ccr_data, UW entnum, UW waynum);

Initialize Cache

vclr_cac ER ercd= vclr_cac (VP clradr1, VP clradr2); 150

ivclr_cac ER ercd= ivclr_cac (VP clradr1, VP clradr2);

Clear Cache

vfls_cac ER ercd= vfls_cac (VP flsadr1, VP flsadr2); 151

ivfls_cac ER ercd= ivfls_cac (VP flsadr1, VP flsadr2);

Flush Cache

vinv_cac ER ercd= vinv_cac (void); 152

ivinv_cac ER ercd= ivinv_cac (void);

Invalidate Cache

 Cache Support Function [HI7750/4:for SH-4]

vini_cac void vini_cac (UW ccr_data); 153

ivini_cac void ivini_cac (UW ccr_data);

Initialize Cache

vclr_cac ER ercd= vclr_cac (VP clradr1, VP clradr2); 154

ivclr_cac ER ercd= ivclr_cac (VP clradr1, VP clradr2);

Clear Operand Cache

vfls_cac ER ercd= vfls_cac (VP flsadr1, VP flsadr2); 155

ivfls_cac ER ercd= ivfls_cac (VP flsadr1, VP flsadr2);

Flush Operand Cache

vinv_cac ER ercd= vinv_cac (VP invadr1, VP invadr2); 156

ivinv_cac ER ercd= ivinv_cac (VP invadr1, VP invadr2);

Invalidate Operand Cache

Appendix A Service Call List

Rev.6.00 400
REJ10B0060-0600

No. Service
Call

C-Language API Function

 Cache Support Function [HI7700/4:for SH4AL-DSP without extended function,
HI7750/4:for SH-4A without extended function]

vini_cac ER vini_cac (ATR cacatr); 157

ivini_cac ER ivini_cac (ATR cacatr);

Initialize Cache

vclr_cac ER ercd= vclr_cac (VP clradr1, VP clradr2, MODE mode);158

ivclr_cac ER ercd= ivclr_cac (VP clradr1, VP clradr2, MODE mode);

Clear Instruction/Operand Cache

vfls_cac ER ercd= vfls_cac (VP flsadr1, VP flsadr2); 159

ivfls_cac ER ercd= ivfls_cac (VP flsadr1, VP flsadr2);

Flush Operand Cache

vinv_cac ER ercd= vinv_cac (VP invadr1, VP invadr2, MODE mode);160

ivinv_cac ER ercd= ivinv_cac (VP invadr1, VP invadr2, MODE
mode);

Invalidate Instruction/Operand
Cache

 Cache Support Function [HI7700/4:for SH4AL-DSP with extended function,
HI7750/4:for SH-4A with extended function]

vini_cac ER vini_cac (ATR cacatr); 161

ivini_cac ER ivini_cac (ATR cacatr);

Initialize Cache

vclr_cac ER ercd= vclr_cac (VP clradr1, VP clradr2, MODE mode);162

ivclr_cac ER ercd= ivclr_cac (VP clradr1, VP clradr2, MODE mode);

Clear Instruction/Operand Cache

vfls_cac ER ercd= vfls_cac (VP flsadr1, VP flsadr2); 163

ivfls_cac ER ercd= ivfls_cac (VP flsadr1, VP flsadr2);

Flush Operand Cache

vinv_cac ER ercd= vinv_cac (VP invadr1, VP invadr2, MODE mode);164

ivinv_cac ER ercd= ivinv_cac (VP invadr1, VP invadr2, MODE
mode);

Invalidate Instruction/Operand
Cache

 DSP Standby Control Function [HI7700/4]

165 vchg_cop ER_UINT oldatr = vchg_cop(ATR newatr); Change TA_COP0 attribute

Rev.6.00 401
REJ10B0060-0600

Appendix B Error List

B.1 Service Call Error Code List

Table B.1 Service Call Error Code List

Error Code
(Mnemonic)

Error Code

Error
Check Type *

Error Contents

1 E_OK H'00000000 (D'0) [k] Normal end

2 E_NOSPT H'fffffff7 (–D'9) [p] Unsupported function (function
is undefined)

3 E_RSFN H'fffffff6 (–D'10) [p] No service call is included

4 E_RSATR H'fffffff5 (–D'11) [p] Reserved attribute (invalid
attribute)

5 E_PAR H'ffffffef (–D'17) [p]/[k] Parameter error

6 E_ID H'ffffffee (–D'18) [p] Invalid ID number

7 E_CTX H'ffffffe7 (–D'25) [k] Context error

8 E_ILUSE H'ffffffe4 (–D'28) [k] Illegal use of service call

9 E_NOMEM H'ffffffdf (–D'33) [k] Insufficient memory

10 E_NOID H'ffffffde (–D'34) [k] No ID available

11 E_OBJ H'ffffffd7 (–D'41) [k] Object state is invalid

12 E_NOEXS H'ffffffd6 (–D'42) [k] Object does not exist

13 E_QOVR H'ffffffd5 (–D'43) [k] Queuing or nest overflow

14 E_RLWAI H'ffffffcf (–D'49) [k] WAITING state is forcibly
cancelled

15 E_TMOUT H'ffffffce (–D'50) [k] Polling failed or timeout

16 E_DLT H'ffffffcd (–D'51) [k] Waiting object deleted

Note: [p] is an error that is checked when the parameter checking function (CFG_PARCHK) is
selected by the setup file. [k] is an error that is always checked.

Appendix B Error List

Rev.6.00 402
REJ10B0060-0600

B.2 Information during System Down
The system down routine is called when the system goes down. Information listed in table B.2
is passed to the system down routine.

Table B.2 Information Passed to the System Down Routine

 Parameters Passed to the System Down Routine

Cause of System Going
Down

Error Type
W type (R4)

Error Code
ER ercd (R5)

System Down
Information 1
VW inf1 (R6)

System Down
Information 2
VW inf2 (R7)

Service call vsys_dwn 1 to H'7fffffff Parameter of service call vsys_dwn

An error in the original
definition of configurator

0 Error code 0: Error in kernel
side

1: Error in kernel
environment side

Indicates the
definition
number where
an initial
definition error
has occurred in
the kernel side
or kernel
environment
side*2

When a context error
occurred as a result of
service call ext_tsk being
issued by the non-task
context

H'ffffffff (–1) E_CTX
(H'ffffffe7)

Address calling
ext_tsk

Undefined

When a context error
occurred as a result of
service call exd_tsk being
issued by the non-task
context

H'fffffffe (–2) E_CTX
(H'ffffffe7)

Address calling
exd_tsk

Undefined

When an undefined interrupt
or an exception occurred

H'fffffff0 (–16) Exception code
or vector
number*1

PC at exception
occurrence

SR at exception
occurrence

Appendix B Error List

Rev.6.00 403
REJ10B0060-0600

Notes: 1. Information saved by the CPU to the interrupt event register (INTEVT or INTEVT2) or
exception event register (EXPEVT) when an interrupt, exception, or unconditional trap
occurs on the HI7700/4 and HI7750/4.

2. The initial definition is processed on the kernel side, and then on the kernel
environment side. The order of initial definition on the kernel side and kernel
environment side is shown below. The orders of each process are the orders that
are listed in each page. However, the system may not go down at orders (1) to (3)
on the kernel side, they are not counted as the initial definition.

(1) Initial definition of interrupt handlers in the interrupt/CPU exception handler
 page

(2) Initial definition of CPU exception handlers in the interrupt/CPU exception
 handler page

(3) Initial definition of CPU exception handlers for trap in the trap exception handler
 page

(4) Initial definition of tasks and task exception processing routines in the task page
(5) Initial definition of semaphores in the semaphore page
(6) Initial definition of event flags in the event flag page

(7) Initial definition of data queues in the data queue page
(8) Initial definition of mailboxes in the mailbox page
(9) Initial definition of mutexes in the mutex page

(10) Initial definition of message buffers in the message buffer page
(11) Initial definition of fixed-size memory pools in the fixed-size memory pool page
(12) Initial definition of variable-size memory pools in the variable-size memory pool
 page
(13) Initial definition of cyclic handlers in the cyclic handler page

(14) Initial definition of alarm handlers in the alarm handler page
(15) Initial definition of overrun handlers in the overrun handler page

(16) Initial definition of extended service calls in the extended service call page

B.3 Error during Compiling

B.3.1 Error when Files are for a Different HI7000/4 Series

If kernel_cfg.c and kernel_def.c are compiled using the file created by the configurator in a
different HI7000/4 series environment, the following message is displayed during compiling.
The underlined part shows the target OS for the file created by the configurator.

Unmatch HIOS (This file is designed for HI7750/4.)

B.3.2 Errors to Do with the Optimized Timer Driver (HI7700/4)

The definition file kernel_def_opttmr_set.h for the optimized timer driver and setting in the
Time management function page in the configurator are checked for the errors shown in table
B.3 when kernel_def.c and kernel_cfg.c are compiled.

Appendix B Error List

Rev.6.00 404
REJ10B0060-0600

Table B.3 Errors of the Optimized Timer Driver

Error Message Meaning

#error directive: “Illegal CFG_TIMUSE” CFG_TIMUSE is not checked in the configurator.
Check CFG_TIMUSE.

#error directive: “Illegal hi_longticrate” Illegal hi_longticrate setting. Specify hi_longticrate
as an integer constant in the 2 to 0xff range.

#error directive: “Illegal hi_pclock” Illegal hi_pclock setting. Specify an integer constant
other than 0 for hi_pclock.

#error directive: “Illegal CFG_TIMINTNO” Illegal CFG_TIMINTNO setting. Specify 0x400.

#error directive: “illegal CFG_TIMINTLVL” Illegal CFG_TIMINTLVL setting. Specify the value
same as kernel interrupt mask level
(CFG_KNLMSKLVL).

Note, this error is not detected when kernel_def.c is
compiled.

B.3.3 Errors to Do with the DSP-Standby Control Function (HI7700/4)

The definition file kernel_def_dspstby_set.h for the DSP-standby control function is checked for
the errors shown in table B.4 when kernel_def.c and kernel_cfg.c are compiled.

Table B.4 Error of the DSP-Standby Control Function

Error Message Meaning

#error directive: “Illegal hi_cop_stby_adr” Illegal hi_cop_stby_adr setting. Specify
hi_cop_stby_adr as a non-zero integer constant.

#error directive: “Illegal hi_cop_stby_bit” Illegal hi_cop_stby_bit setting. Specify
hi_cop_stby_bit as an integer constant in the 1 to
0xff range when using SH3-DSP. Specify
hi_cop_stby_bit as an integer constant in the 1 to
0xffffffff range when using SH4AL-DSP.

Rev.6.00 405
REJ10B0060-0600

Appendix C Calculation of Work Area Size

C.1 Work Areas
To facilitate memory allocation, a section is assigned for each work area as listed in table C.1.
Allocate these sections to suitable addresses at linkage.

Table C.1 Work Areas

Work Area Section Name File Defining Sections

Kernel work area B_hiwrk kernel_cfg.c

CPU vector table (HI7000/4 only) B_hivct

Static stack area B_histstk

Dynamic stack area B_hidystk

Interrupt handler and time event handler stack
area

B_hiirqstk

Memory pool area B_himpl

DX target trace buffer area B_hitrcbuf

Memory pool management table * B_hicfg

DX emulator trace (tool trace) area B_hitrceml

Memory pool management table * B_hidef kernel_def.c

Work area used by application Determined by user Determined by user

Note: * When a fixed-size memory pool is created while CFG_MPFMANAGE is selected
through the configurator or when a variable-size memory pool with the
VTA_UNFRAGMENT attribute is created while CFG_NEWMPL is selected through
the configurator.

For the size of each section, refer to the compile listing.

Kernel Work Area (Section B_hiwrk, B_hidef, B_hicfg): Used for kernel operation; contains
the task control block (TCB), message buffer area, and kernel stack area. The size of the kernel
work area is determined according to object maximum IDs such as CFG_MAXTSKID, or
CFG_DTQSZ, and CFG_MBFSZ.

CPU Vector Area (Section B_hivct): The CPU vector table is created in this section when
CFG_VCTRAM has been selected.

Static Stack Area (Section B_histstk): Static stack area statically defined and allocated by the
configurator.

Dynamic Stack Area (Section B_hidystk): Task stack area dynamically allocated when a task
is created. The size of the dynamic stack area is determined according to CFG_TSKSTKSZ.

Appendix CCalculation of Work Area Size

Rev.6.00 406
REJ10B0060-0600

Interrupt Handler and Time Event Handler Stack Area (Section B_hiirqstk): Area used by
interrupt handlers and time event handlers. The size of the interrupt handler and time event
handler stack area is determined according to CFG_IRQSTKSZ and CFG_TMRSTKSZ,
respectively.

Memory Pool Area (Section B_himpl): Area for variable-size and fixed-size memory pools.
The size of the memory pool area is determined according to CFG_MPLSZ and CFG_MPFSZ.

DX Trace Buffer Area (Section B_hitrcbuf): This area is allocated when the target trace is set
to CFG_TRCTYPE. The size is fixed to CFG_TRCBUFSZ bytes.

DX Emulator Trace (Tool Trace) Area (Section B_hitrceml): This area is allocated when
emulator trace (tool trace) is specified through CFG_TRCTYPE. The size is fixed to 14 bytes.

Work Area Used by Application: Area for variables used by applications.

C.2 Stack Types
Each task or handler requires its own contiguous stack area. If a stack overflows, the system will
operate incorrectly. Therefore, the user must determine the stack size required for each task or
handler execution and allocate enough area for each task or handler by referring to the following
description.

Task Stack: An independent stack used by each task ID. The kernel switches task stacks at task
scheduling. A task exception processing routine also uses the stack used by the same task. Task
stacks are classified into static stacks and dynamic stacks. In addition, the stack area that is
allocated by application can be used.

The task stack is switched by the kernel. Accordingly, the stack must not be switched by the
task.

Interrupt Handler Stack: When a normal interrupt occurs, the stack is switched to the one
dedicated to the interrupt handler by the kernel. Accordingly, the stack must not be switched by
the interrupt handler. When a direct interrupt of the HI7000/4 occurs, the stack must be allocated
and switched by the interrupt handler. Unless it is switched, the interrupt handler uses the stack
of the task that was executed before the interrupt occurred. Therefore, the task stack may
overflow.

When the HI7000/4 is used, the NMI must be defined as the direct interrupt handler. However,
the NMI has the possibility of re-entry, so stack switching must not be performed by the NMI
interrupt handler. Stacks for tasks and handlers must be reserved considering the size used by the
NMI interrupt handler since the stack before the NMI occurrence is used by the NMI interrupt
handler.

The time event handler uses the interrupt handler stack. The stack must not be switched by the
time event handler.

Appendix CCalculation of Work Area Size

Rev.6.00 407
REJ10B0060-0600

Kernel Stack: Stack used by the kernel. It is also used by the initialization routine. The stack
must not be switched in the initialization routine.

Stack Used before Kernel Initiation: The stacks used by programs executed before kernel
initiation, such as the CPU initialization routine, are not managed by the kernel. Therefore, the
user can use the desired area for the stack. In the HI7000/4, the stack pointer at power-on reset
must be set in the reset vector. In the HI7700/4 and HI7750/4, it must be defined at the
beginning of the CPU initialization routine.

For a microcomputer having built-in RAM, allocate the stack at reset to the built-in RAM. For a
microcomputer without built-in RAM, the stack (the user system RAM) may not be accessed
during reset depending on the bus state controller (BSC) status immediately after reset. In this
case, do not run programs that use stacks and do not generate any interrupts or exceptions until
the memory becomes accessible by changing the BSC settings. This is because register data is
stored in the stack when interrupts or exceptions occur.

C.3 Stack Size Calculation Procedure
Use the stack size calculation procedure shown in figure C.1 to define the appropriate sizes in
the corresponding definition parts.

Calculate the stack size for each function. Section C.4

Determine the stack size by considering the
program nesting.

Section C.5

Determine the task and handler stack size, and
assign the results to the corresponding items.

Sections C.6 to C.9

Figure C.1 Stack Size Calculation Procedure

Appendix CCalculation of Work Area Size

Rev.6.00 408
REJ10B0060-0600

C.4 Calculation of Stack Size for Each Function
C Language Function: When a C language function is initiated, a stack frame is allocated in
the stack area. The stack frame is used as a local variable area for the function or as a parameter
area for a function call. The stack frame size can be determined from the frame size in the object
listing output by the compiler.

An example is shown below.

extern int h(char, int*, double);
int h(char a, register int *b, double c)
{
 char *d;

 d=&a;
 h(*d,b,c);
 {
 register int i;
 i=*d;
 return i;
 }
}
************ OBJECT LISTING ************
FILE NAME: m0251.c

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT
P 00000000 _h: ; function: h
 ; frame size=20 ...(1)
 00000000 2FE6 MOV.L R14, @-R15
 00000002 2FD6 MOV.L R13, @-R15
 (omitted)

c

0

20

28

Are for the function
(Frame size: 20 bytes) (1)

Parameter area
(8 bytes) (2)

Stack frame

Stack

a
b

R4
R5

Figure C.2 Compile List and Stack Size

The stack area size used by the function is obtained by adding (1) and (2) shown above, 28
bytes.

For details on parameters allocated to the parameter area on the stack, refer to the SuperH™
RISC engine C/C++ Compiler User's Manual.

Appendix CCalculation of Work Area Size

Rev.6.00 409
REJ10B0060-0600

Assembly Language Function: To calculate the stack size, examine the stack push and pop (in
predecrement and postincrement register indirect addressing mode) instructions used in the
program. When parameters are pushed onto the stack at function call, the area size for the
parameters must be added to the stack size.

C.5 Stack Size Considering Programming Nesting
A stack size considering programming nesting is calculated with the following program start
functions as a base point.

• Tasks

• Interrupt handlers

• Time event handlers

• Initialization routine

Programming nesting includes all functions that are called from these start functions and the
following program calls.

• Extended service call routine

• Task exception processing routine

• CPU exception handlers (containing TRAPA instruction exception handlers)

Calculate the total value of the stack sizes used by each function and determined according to
appendix C.4, Calculation of Stack Size for Each Function above for each nesting case. When
the task exception processing routine or CPU exception handlers (containing TRAPA instruction
exception handlers) is nested, add the value shown in table C.2 for each nesting.

Table C.2 Additional Stack Size of the Call Routine and the Handlers

 Additional Size (Byte)

Item HI7000/4 HI7700/4 HI7750/4

Task exception processing routine 172 172 *2 180

 TA_COP0 attribute
included *1

56 56 —

 TA_COP1 attribute
included

72 — 64

 TA_COP2 attribute
included

— — 64

CPU exception handlers (containing TRAPA
instruction exception handlers)

44 44 48

Note: 1 In the HI7700/4, TA_COP0 attribute can be set or cleared by vchg_cop service call.
This additional size is necessary when TA_COP0 attribute is set by vchg_cop.

 2 With the optimization timer driver or the DSP standby control function, it becomes
168.

Appendix CCalculation of Work Area Size

Rev.6.00 410
REJ10B0060-0600

An example of calculation is shown below for the HI7700/4 where the stack size considering
programming nesting is added. The program nesting shown in figure C.3 is used as an example.

task_a() sub1()

sub2()

texrtn()sub3()

sub4()task_b()
Uses 16 bytes

Figure C.3 Programming Nesting

The stack size of each function is assumed as follows:

Table C.3 Stack Size of Each Function

Function Size (Byte) Note

task_a 56 Start function of task A, No TA_COP0 attribute included

task_b 40 Start function of task B, No TA_COP0 attribute included

sub1 88 task_a subroutine

sub2 8 task_a subroutine

sub3 24 Common subroutine

sub4 12 task_b subroutine

texrtn 172 + 16 = 188 Start function of task exception processing routine, No TA_COP0
attribute included, CFG_NEWMPL is not selected

The stack sizes of tasks A and B, considering the calling path, are shown in table C.4.

Table C.4 Task Size Considering Calling Path

Task Calling Path Task Size (Byte)

Task A task_a<56 bytes> → sub1 <88 bytes> 144

 task_a<56 bytes> → sub2 <8 bytes> → texrtn <160> 224

 task_a<56 bytes> → sub3 <24 bytes> → texrtn <160> 240 (maximum)

Task B task_a<40 bytes> → sub3 <24 bytes> → texrtn <160> 224 (maximum)

 task_a<56 bytes> → sub4 <12 bytes> 68

Appendix CCalculation of Work Area Size

Rev.6.00 411
REJ10B0060-0600

C.6 Task Stacks

C.6.1 Stack Size Used by Each Task

Each task stack size can be determined by substituting the size obtained according to
appendix C.5 above into table C.5.

For tasks that use the dynamic stack, specify the value calculated using table C.5 as a stack size
when a task is created (by cre_tsk and acre_tsk service calls and the configurator).

For tasks that use a static stack, allocate the stack size calculated using table C.5 by the
configurator.

Appendix CCalculation of Work Area Size

Rev.6.00 412
REJ10B0060-0600

Table C.5 Task Stack Size

 Stack Size (Byte)

Item HI7000/4 HI7700/4 HI7750/4

Size obtained in C.4 and C.5

Mandatory 140 184 *4 196

TA_COP0 attribute included *3 56 56 —

TA_COP1 attribute included 72 — 64

TA_COP2 attribute included — — 64

Static stacks 8 8 8

CFG_TRACE is selected 24 24 24

CFG_NEWMPL is selected 28 28 28

Addition considering nested interrupts *1 — —

The added value when the NMI is used *2 — —

Total

Note: 1. (1) When NOBANK, NOTUSE, or SELECT has been selected for CFG_REGBANK:

 (1.1) When CFG_DIRECT has been selected
 12 × CFG_UPPINTNST + 20 × CFG_LOWINTNST
 (1.2) When CFG_DIRECT has not been selected

 12 × CFG_UPPINTNST + 24 × CFG_LOWINTNST + 20
 However, when CFG_LOWINTNST is 0, assume the underlined part to be 0.
 (2) When ALL has been selected for CFG_REGBANK

 8 × CFG_UPPINTNST + 16 × CFG_LOWINTNST
 If you are using UBC interrupts, however, the following values must also be added.
 ⎯ UBC interrupts used as direct interrupts: 4 bytes

 ⎯ UBC interrupts used as normal interrupts: 28 bytes
 2. ((Size of the stack area used by the NMI interrupt handler calculated as shown in

appendixes C.4 and C.5) + 8) × (NMI nest count)
When there is no nesting, the NMI nest count is 1.

 3. In the HI7700/4, TA_COP0 attribute can be set or cleared by vchg_cop service call.
This additional size is necessary when TA_COP0 attribute is set by vchg_cop.

 4 With the optimization timer driver or the DSP standby control function, it becomes
208.

C.6.2 Stack Area Acquisition

The dynamic stack area can be automatically allocated by specifying a size in CFG_TSKSTKSZ
by the configurator. For CFG_TSKSTKSZ, use the value of the following equation or a larger
size.

CFG_TSKSTKSZ = ∑ (Stack use size of the task which uses dynamic stack +16) + 28

Appendix CCalculation of Work Area Size

Rev.6.00 413
REJ10B0060-0600

C.7 Interrupt Handler Stacks

C.7.1 Stack Size Used by an Interrupt Handler

The interrupt-handler stack size can be determined by substituting the size obtained from
appendix C.5 above into table C.6. The stack size for the NMI interrupt handler must be
calculated by using the item no. 1 in table C.6. This value is used in the calculation in
appendixes C.6 to C.9.

Table C.6 Interrupt Handler Stack Size

 Stack Size (Byte)

 HI7000/4 HI7700/4 HI7750/4

Item

Direct
Interrupt
Handler

Normal
Interrupt
Handler

Size obtained in C.4 and C.5

Calls service call 168 168 168 *3 172

 CFG_TRACE is selected 24 24 24 24

 CFG_NEWMPL is selected 28 28 28 28

Addition considering nested interrupts *1 — — —

Added value when the NMI is used *2 — — —

Total

Note: 1. uppintnst: The nest count of direct interrupts that are higher than
 CFG_KNLMSKLVL and the interrupt level
lowintnst: The nest count of interrupts that are lower than or equal to
 CFG_KNLMSKLVL and higher than the interrupt level

 (1) When NOBANK, NOTUSE, or SELECT has been selected for CFG_REGBANK:
 (1.1) When CFG_DIRECT has been selected
 12 × uppintnst + 20 × lowintnst

 (1.2) When CFG_DIRECT has not been selected
 12 × uppintnst + 24 × lowintnst + 20
 However, when lowintnst is 0, assume the underlined part to be 0.

 (2) When ALL has been selected for CFG_REGBANK

 8 × uppintnst + 16 × lowintnst
 If you are using UBC interrupts, however, the following values must also be added.

 ⎯ UBC interrupts used as direct interrupts: 4 bytes
 ⎯ UBC interrupts used as normal interrupts: 28 bytes
 2. ((Size of the stack area used by the NMI interrupt handler calculated as shown in

appendixes C.4 and C.5) + 8) × (NMI nest count)
When there is no nesting, the NMI nest count is 1.

 3 With the optimization timer driver or the DSP standby control function, it becomes
164.

Appendix CCalculation of Work Area Size

Rev.6.00 414
REJ10B0060-0600

C.7.2 Stack Area Allocation

Direct Interrupt Handlers (HI7000/4):

Since handlers of the same level are not activated concurrently, allocate the stack area of the
handler that uses the largest stack area from among the same interrupt-level interrupt handlers as
the handler stack area of the corresponding interrupt level. Then switch to the stack at the
beginning of the interrupt handler. Refer to section 4.8, Interrupt Handlers when switching
stacks by interrupt handler. In this case, separate stacks can be used instead of sharing a stack
within the same interrupt-level handlers. Note, however, that a stack dedicated to the NMI
interrupt handler cannot be used since NMI has the possibility of re-entry. The stack size to be
used by the NMI interrupt must be added in appendixes C.6 to C.9 because the NMI interrupt
handler uses the stack at the point of the NMI occurrence.

Normal Interrupt Handlers:

All interrupt handlers use the same interrupt handler stack. The interrupt handler stack area can
be automatically allocated by specifying a size in CFG_IRQSTKSZ by the configurator. For
CFG_IRQSTKSZ, use the value of the following equation or a larger size.

• HI7000/4

(1) When CFG_DIRECT has been selected:
Since there are no normal interrupt handlers, an interrupt handler stack area is not
allocated.

(2) When CFG_DIRECT has not been selected:

(a) When NOBANK, NOTUSE, or SELECT has been selected for CFG_REGBANK:
CFG_IRQSTKSZ =
 ∑ (Size of the largest stack area used by the handler at the interrupt level) + 4
 + 12 × CFG_UPPINTNST + 24 × (CFG_LOWINTNST - 1) + 20
 + ((Size of the stack area used by the NMI interrupt handler calculated as shown in
 appendixes C.4 and C.5) + 8) × (NMI nest count)

However, when CFG_LOWINTNST <= 1, assume the underlined part to be 0.

(b) When ALL has been selected for CFG_REGBANK:
CFG_IRQSTKSZ =
 ∑ (Size of the largest stack area used by the handler at the interrupt level) + 4
 + 8 × CFG_UPPINTNST + 16 × (CFG_LOWINTNST - 1) + 20
 + ((Size of the stack area used by the NMI interrupt handler calculated as shown in
 appendixes C.4 and C.5) + 8) × (NMI nest count)

However, when CFG_LOWINTNST <= 1, assume the underlined part to be 0.

If you are using UBC interrupts, however, the following values must also be added.

 ⎯ UBC interrupts used as direct interrupts: 4 bytes

 ⎯ UBC interrupts used as normal interrupts: 28 bytes

Appendix CCalculation of Work Area Size

Rev.6.00 415
REJ10B0060-0600

• HI7700/4
CFG_IRQSTKSZ =
 ∑ (Size of the largest stack area used by the handler at the interrupt level) + 4
 + 44 × ((Number of interrupt levels in the system, except NMI) - 1)
 + ((Size of the stack area used by the NMI interrupt handler calculated as shown in
 appendixes C.4 and C.5) + 44) × (NMI nest count)

• HI7750/4
CFG_IRQSTKSZ =
 ∑ (Size of the largest stack area used by the handler at the interrupt level) + 4
 + 48 × ((Number of interrupt levels in the system, except NMI) - 1)
 + ((Size of the stack area used by the NMI interrupt handler calculated as shown in
 appendixes C.4 and C.5) + 48) × (NMI nest count)

When there is no nesting, the NMI nest count is 1.

C.8 Stack Size Used by a Time Event Handler and Timer Interrupt
Routine

The size of each time event handler stack and timer interrupt routine (_kernel_tmrint()) stack can
be determined from appendixes C.4 and C.5.

The size determined by substituting the maximum size of all time event handlers and timer
interrupt routine into Table C.7 must be assigned to CFG_TMRSTKSZ.

When CFG_ACTION is selected, calculate under the following conditions.

• Size obtained in C.4 and C.5: 32

• Calls service calls: Yes

When no time event handler is used and CFG_ACTION is not selected, calculate under the
following conditions.

• Size obtained in C.4 and C.5: 0

• Calls service calls: No

Appendix CCalculation of Work Area Size

Rev.6.00 416
REJ10B0060-0600

Table C.7 Time Event Handler and Timer Interrupt Routine Stack Size

 Stack Size (Byte)

Item HI7000/4 HI7700/4 HI7750/4

Size obtained in C.4 and C.5

Mandatory (1) CFG_REGBANK is not selected: 144

(2) CFG_REGBANK is selected: 68

140 *3 144

CFG_NEWMPL is selected 28 28 28

Calls service call 140 140 144

 CFG_TRACE is selected 24 — —

Addition considering nested
interrupts

*1 — —

Addition when the NMI is used *2 — —

Total

Note: 1. uppintnst: The nest count of direct interrupts that are higher than
 CFG_KNLMSKLVL and CFG_TIMINTLV
lowintnst: The nest count of interrupts that are lower than or equal to
 CFG_KNLMSKLVL and higher than CFG_TIMINTLV

 (1) When NOBANK, NOTUSE, or SELECT has been selected for CFG_REGBANK:

 (1.1) When CFG_DIRECT has been selected
 12 × uppintnst + 20 × lowintnst
 (1.2) When CFG_DIRECT has not been selected

 12 × uppintnst + 24 × lowintnst + 20
 However, when lowintnst is 0, assume the underlined part to be 0.
 (2) When ALL has been selected for CFG_REGBANK

 8 × uppintnst + 16 × lowintnst
 If you are using UBC interrupts, however, the following values must also be added.
 ⎯ UBC interrupts used as direct interrupts: 4 bytes

 ⎯ UBC interrupts used as normal interrupts: 28 bytes
 2. ((Size of the stack area used by the NMI interrupt handler calculated as shown in

appendixes C.4 and C.5) + 8) × (NMI nest count)
When there is no nesting, the NMI nest count is 1.

 3 With the optimization timer driver or the DSP standby control function, it becomes
164.

Appendix CCalculation of Work Area Size

Rev.6.00 417
REJ10B0060-0600

C.9 Initialization Routine Stacks
The size of each initialization routine stack can be determined by substituting the size obtained
from appendix C.5 above into table C.8. When each initialization routine is defined by the
configurator, the size obtained in this section must be used.

The initialization routine is executed in serial, the maximum size of each initialization routine
stack is allocated.

Table C.8 Initialization Routine Stack Size

 Stack Size (Byte)

Item HI7000/4 HI7700/4 HI7750/4

Size obtained in C.4 and C.5

Calls service call 140 140 *2 144

 CFG_TRACE is selected 24 24 24

 CFG_NEWMPL is selected 28 28 28

Addition when the NMI is used *1 — —

Total

Notes: 1. ((Size of the stack area used by the NMI interrupt handler calculated as shown in
appendixes C.4 and C.5) + 8) × (NMI nest count)
When there is no nesting, the NMI nest count is 1.

 2. With the optimization timer driver or the DSP standby control function, it becomes
164.

Appendix CCalculation of Work Area Size

Rev.6.00 418
REJ10B0060-0600

C.10 Timer Initialization Routine Stack
The maximum stack size to be used by timer initialization routine (_kernel_tmrini()) is
determined as follows.

• HI7000/4: 252 bytes

• HI7700/4: 208 bytes

• HI7750/4: 204 bytes

When the size calculated by table C.9 exceeds the above size, allocate a new stack area with the
calculated size and switch to that stack.

Table C.9 Timer Initialization Routine Stack Size

 Stack Size (Byte)

Item HI7000/4 HI7700/4 HI7750/4

Size obtained in C.4 and C.5

Calls service call 140 140 *2 144

 CFG_TRACE is selected 24 24 24

 CFG_NEWMPL is selected 28 28 28

Addition when the NMI is used *1 — —

Total

Notes: 1. ((Size of the stack area used by the NMI interrupt handler calculated as shown in
appendixes C.4 and C.5) + 8) × (NMI nest count)
When there is no nesting, the NMI nest count is 1.

 2 With the optimization timer driver or the DSP standby control function, this value
becomes 164.

Rev.6.00 419
REJ10B0060-0600

Appendix D Timer Driver

D.1 Overview
A timer driver must be required for the time-management functions of the kernel
(CFG_TIMUSE is selected) to be usable. Timer drivers are of two types: standard timer driver
and optimized timer driver.

• Standard Timer Driver

User must create the standard timer driver, and link to kernel. The HI7000/4 series provide
samples for some microcomputer.

• Optimized Timer Driver

The optimized timer driver is supported by only HI7700/4. The optimization timer driver
fewer interrupts than the standard timer driver. The optimized timer driver is built into the
kernel and cannot be created by the user.

For how to use the optimized timer driver, refer to Appendix E, Optimized Timer Driver
(HI7700/4). The following sections explain the specifications of the standard timer driver.

D.2 Standard Timer Driver
The standard timer driver is composed of the timer initialization routine and the timer
interruption routine. The timer interruption processing routine is called from timer interruption
handler _kernel_isig_tim() of the kernel, and clears the interruption factor. And, the timer
initialization routine is executed as an initialization routine.

D.2.1 Installing the Time Management Function

To use the time management function of the kernel, the following operations are required:

1. Set the time management function page by the configurator

Here the following kernel function constants are defined:

⎯ TIC_NUME: Numerator of time tick cycle (CFG_TICNUME)
⎯ TIC_DENO: Denominator of time tick cycle (CFG_TICDENO)
⎯ TIM_LVL: Timer interrupt level (CFG_TIMINTLVL)

The cycle time when the time tick is provided is TIC_NUME/TIC_DENO (ms). Based on
this cycle time, the precision of the time parameter specified in the service call is determined.
For example, when tslp_tsk(10) is executed, timeout time is 12 to 15 ms if TIC_NUME = 3
and TIC_DENO = 1; timeout time is 10 to 10.5 ms if TIC_NUME = 1 and TIC_DENO = 2.
Note that at least one of TIC_NUME and TIC_DENO must be specified as 1.

In addition, if TIC_DENO is specified as a value greater than 1, the maximum value that can
be specified to TMO-, RELTIM-, and OVRTIM-type parameters is limited to the available
maximum value/TIC_DENO.

Appendix D Timer Driver

Rev.6.00 420
REJ10B0060-0600

The following operations are automatically performed by setting the time management
function page by the configurator.

⎯ _kernel_tmrini() is defined as the kernel initialization routine.
⎯ isig_tim processing module of the kernel is defined as the timer interrupt handler.

2. Create a timer driver

Here, the following two C language functions are created. These function names are fixed.

⎯ Timer initialization routine: _kernel_tmrini()
⎯ Timer interrupt routine: _kernel_tmrint()

The timer initialization routine is created as an initialization routine. For details, refer to
section 4.10, Time Event Handlers and Initialization Routine.

In the timer initialization routine, initialize the timer counter registers according to the
TIC_NUME and TIC_DENO, as defined in kernel_macro.h, and specify timer interrupt level
according to TIM_LVL, as defined in kernel_macro.h.

When a timer interrupt occurs, the isig_tim processing module of the kernel is initiated as an
interrupt handler. The isig_tim processing module then calls the timer interrupt routine
_kernel_tmrint(). In the timer interrupt routine _kernel_tmrint(), clear the interrupt factor
flag.

The timer interrupt routine can be defined as a normal C language function, as shown in
figure D.1. The timer interrupt processing routine operates as a part of the interrupt handler.

#include “kernel.h”

void _kernel_tmrint(void) ←Function name is fixed.

{

 /* Routine processing */

}

Figure D.1 Example of a C Language Timer Interrupt Routine

Rules on timer interrupt routine register specifications are the same as normal interrupt
handlers. For details, refer to section 4.8.1, Normal Interrupt Handler.

To use the DSP in the timer initialization routine and the timer interrupt routine, refer to
section 4.13, Using the DSP in Programs (for HI7000/4 and HI7700/4 only).

To use the FPU in the timer initialization routine and the timer interrupt routine, refer to
appendix G.2, Non-Task Context (Normal Interrupt Handler, Direct Interrupt Handler, CPU
Exception Handler, Time Event Handler, Initialization Routine).

3. Link the timer driver

The timer driver must be linked to the kernel.

Appendix D Timer Driver

Rev.6.00 421
REJ10B0060-0600

D.2.2 Sample Timer Driver

The sample timer driver consists of the following header files and source files:

1. Device header file (file name: nnnn_tmrdrv.h)

This file defines register I/O addresses and initial values, and timer device information.
These values do not need to be modified.

2. Header file (file name: nnnn_tmrdef.h)

This file defines information that determines timer driver operations such as clock frequency.

3. Source program file (file name: nnnn_tmrdrv.c)

⎯ Timer initialization routine (function: void _kernel_tmrini(void))
⎯ Timer interrupt routine (function: void _kernel_tmrint(void))

The timer interrupt period (T) is calculated by follow expression.

 T [sec] = { (1 / PCLOCK) x DIV} × N

⎯ PCLOCK[Hz]: Frequency which is supplied to the timer module
⎯ DIV: Divided ratio by setting of the timer module register
⎯ N: The number of timer clock counts which expires the period (T)

In general, the following expressions consist to count the timer module n + 1 when n is set to the
counter register of the timer module. For the sample timer drivers, each sign in the above
expression is made to correspond as follows.

 n = N - 1

The sample timer drivers, which are provided by the HI7000/4 series, calculate n according to
the above calculation method, and set to register of the timer module.

⎯ T: CFG_TICNUME/CFG_TICDENO [ms]
⎯ PCLOCK: “PCLOCK” which is defined in the nnnn_tmrdef.h. [Hz]
⎯ DIV: In the HI7000/4, “DIV” which is defined in the nnnn_tmrdrv.c.

In the HI7700/4 and HI7750/4, the DIV is selected automatically in order to “PCLOCK”.

⎯ n: The above expression is defined in “COUNTER” in the nnnn_tmrdrv.c.

Note that, when the calculated value as COUNTER is larger than the counter register size, the
period is illegal. Do confirm this.

And, when the calculated value as COUNTER is not integer, the value is rolled to integer. In this
case, the period at run-time is shorter than expected period (CFG_TICNUME/CFG_TICDENO).

Table D.1 shows sample timer driver files provided by each product at this manual creation time
and the clock source of the timer modules assumed by the sample timer driver. For more detail,
refer to the contents of the header file.

Appendix D Timer Driver

Rev.6.00 422
REJ10B0060-0600

Table D.1 Sample Timer Driver Files and Clock Sources

Product

nnnn

Target Microcomputers and
Internal Timer Modules

Assumed Timer Module Clock
Source

HI7000/4 7011 SH7011, SH7018 CMT System clock (φ) = 20 MHz

V.2.02 703x SH7020, SH7021, SH7032,
SH7034

ITU System clock (φ) = 20 MHz

 704x SH7040, SH7041, SH7042,
SH7043, SH7044, SH7045,
SH7014, SH7016, SH7017

CMT System clock (φ) = 28 MHz

 7046 SH7046, SH7047, SH7048,
SH7049, SH7144, SH7145,
SH7148

CMT System clock (φ) = 40 MHz

 7050 SH7050, SH7051 CMT System clock (φ) = 20 MHz

 7052 SH7052, SH7053, SH7054 CMT Peripheral clock (φ) = 20 MHz

 7065 SH7065 CMT Peripheral clock (Pφ) = 30 MHz

 7604 SH7604 FRT System clock (φ) = 28.7 MHz

 7615 SH7615, SH7616 FRT Peripheral clock (Pφ) = 30 MHz

 7618 SH7618 CMT Peripheral clock (Pφ) = 12.5 MHz

 72060 SH72060 CMT Peripheral clock (Pφ) = 24 MHz

HI7700/4 7707 SH7707 TMU Peripheral clock (Pφ) = 30 MHz

V.2.02 7708 SH7708, SH7708R,
SH7708S

TMU Peripheral clock (Pφ) = 15 MHz

 7709 SH7709 TMU Peripheral clock (Pφ) = 30 MHz

 7709a SH7709A, SH7709S,
SH7706

TMU Peripheral clock (Pφ) = 33.34 MHz

 7729 SH7729, SH7729R, SH7727 TMU Peripheral clock (Pφ) = 33.34 MHz

 7290 SH7290, SH7294, SH7300 TMU Peripheral clock (Pφ) = 19.8 MHz

 7641 SH7641 CMT Peripheral clock (Pφ) = 25 MHz

 7318 SH7318 TMU Peripheral clock (Pφ) = 27 MHz

 7343 SH7343 TMU Peripheral clock (Pφ) = 27 MHz

HI7750/4
V.2.02

7750 SH7750, SH7750S,
SH7750R

TMU Peripheral clock (Pφ) = 50 MHz

 7751 SH7751, SH7751R TMU Peripheral clock (Pφ) = 41.6 MHz

 7760 SH7760 TMU Peripheral clock (Pφ) = 33.34 MHz

 7770 SH7770 TMU Peripheral clock (Pφ) = 50 MHz

 7785 SH7785 TMU Peripheral clock (Pφ) = 50 MHz

The operation conditions of the sample timer driver are defined in the header files. The header
files can be modified as required. Note, however, that to change the timer interrupt cycle time,
the time tick cycle (CFG_TINUME and CFG_TICDENO) must be changed by the configurator
not by changing the header file.

Rev.6.00 423
REJ10B0060-0600

Appendix E Optimized Timer Driver (HI7700/4)

E.1 Overview
The standard timer driver generates timer interrupts in the same cycle as the time precision for
service calls (CFG_TICNUME/CFG_TICDENO [ms]). When the optimized timer driver is
used, the frequency of interrupts can be reduced while the time precision for service calls is
maintained. This is expected to have the following effects:

• The frequency of timer-interrupt generation during sleep mode is reduced; this leads to
improved power consumption.

• Reducing the frequency of timer interrupts lowers the percentage of CPU time taken up by
timer-interrupt processing and improves the throughput of the system. Alternatively, the
CPU may be placed in the low power-consumption mode for a greater part of the time.

Unlike the standard timer driver, the optimized timer driver is built into the kernel. The user
cannot create an optimized timer driver.

In addition, this function does not require the modification of existing application programs.

E.2 Operation
Figure E.1 shows examples of operation where the standard timer driver and optimized timer
driver are used to provide time precision of 1 ms (CFG_TICNUME/CFG_TICDENO).

Figure E.1 Example of Operation

Two TMU timer channels, one with a 1 ms and the other with a 5 ms period, are used in
operating the optimized timer driver as shown in figure E.1; the respective timing cycles are
called the high-precision and low-precision cycle. The high-precision cycle is the result, in ms,
of the division of values specified by the configurator, i.e., CFG_TICNUME/CFG_TICDENO.

tslp_tsk(9)

Timer interrupt

tslp_tsk(9)

Timeout

5 [ms] timer interrupts 1 [ms] timer interrupts

Timeout

Standard timer driver:

Optimized timer driver:

1 [ms]

Appendix E Optimized Timer Driver (HI7700/4)

Rev.6.00 424
REJ10B0060-0600

The period of the low-precision cycle is an integer multiple of this period and is set by the user
statically.

When the optimized timer driver is in use, the kernel investigates the following situations at the
right time.

• Waiting tasks by service calls with timeout (txxx_yyy)

• Waiting tasks by dly_tsk service call

• Cyclic handlers

• Alarm handlers

The kernel uses the results to determine whether or not interrupts from the high-precision cycle
are needed, and accordingly enables or disables the corresponding interrupt.

Interrupts from the low-precision cycle are always enabled.

Although figure E.1 does not show this, a further TMU channel is used in monitoring for the
overrun handler. This timer interrupt is only generated when a task has used the upper limit on
the allowed processor time.

Figure E.2 shows two effects of using the optimized timer driver. This function reduces the
frequency of timer interrupts, leading to the following advantages over the standard timer driver.

• Quicker transitions to sleep mode (lower amounts of CPU time consumed in timer-interrupt
processing)

• Less frequent cancellation of sleep mode for the processing of timer interrupts

Power

Time

Power

Time
: Preiod during the timer interrupt processing
: Preiod during other than the timer interrupt processing
: Period during transitions to sleep mode

Standard timer driver in use:

Optimized timer driver in use:

SLEEP instruction

SLEEP instruction Any interrupt

Any interrupt

(1) Quicker transitions to
the sleep mode

(2) Less frequent cancel of sleep mode
for the timer interrupts

Figure E.2 Schematic Illustration of the Optimized Timer Driver's Effects

Appendix E Optimized Timer Driver (HI7700/4)

Rev.6.00 425
REJ10B0060-0600

E.3 Applicable MCUs
The optimized timer driver uses TMU with build-in MCU. However, the optimization timer
driver might not be able to be used even in case of MCU with built-in TMU. At the time of
writing, the optimized timer driver can only be run with the following MCUs:

 SH7630, SH7290, SH7294, SH7300, SH7660, SH7318, SH7343

For the latest information, refer to the release notes on individual products.

E.4 Hardware Initialization
The following processing is carried out to initialize the optimized timer driver when the kernel is
started up:

(1) Cancels the module standby state of TMU.

(2) Initializes channels 0, 1, and 2.

(3) Sets the interrupt levels of channels 0, 1, and 2 for the interrupt controller.

However, when the def_ovr service call has not been selected in the configurator, settings for
channel 2 in the above (2) and (3) are not made.

Note that the optimized timer driver does not place the TMU in the module-standby state.

E.5 Differences with the Standard Timer Driver
Table E.1 shows the differences between the standard and optimized timer drivers.

Table E.1 Differences between the Standard and Optimized timer Drivers

 Standard Timer Driver Optimized Timer Driver

Time precision of service
calls

CFG_TICNUME/
CFG_TICDENO (ms)

As at left (however, the time
precision of the overrun handler
is always 1 ms).

Required hardware timer One channel of any timer
(channel 0 of the TMU is used
with the sample standard timer
driver)

Channels 0, 1, and 2 of the
TMU. However, when def_ovr is
not selected, channel 2 is
unused.

Timer-interrupt level A user-defined value between 1
and the kernel's interrupt-mask
level (CFG_KNLMSKLVL) is set
in CFG_TIMINTLVL.

Limited to the kernel interrupt
mask level.

Driver creation by the user Possible Not possible

Appendix E Optimized Timer Driver (HI7700/4)

Rev.6.00 426
REJ10B0060-0600

E.6 Ways to Include Optimized Timer Driver

E.6.1 Overview

This section gives information that is supplementary to the standard configuration procedure.
For details, see section 5, Configuration.

Table E.2 shows the procedures which must be followed to include a timer driver.

Table E.2 Including a Timer Driver

Item

No Timer
Driver

Standard Timer
Driver Optimized Timer Driver

Creation of a definition
file (E.6.2)

Not needed Not needed Needed

CFG_
TIMUSE

Not checked Checked Checked Configurator

Notes in
E.6.3

Not relevant Not relevant Relevant

Modifying kernel_sys.h
(E.6.4)

Not needed Not needed Needed

Timer driver to be linked None Standard timer
driver

None (the optimized timer
driver is included in the
kernel library)

E.6.2 Creating the kernel_def_opttmr_set.h Definition File

The following settings for the optimized timer driver are defined in kernel_def_opttmr_set.h.

• hi_longticrate: the ratio low-precision cycle/high-precision cycle

• hi_pclock: the MCU's peripheral clock (Pφ)

This file is included from the kernel_def.c and kernel_cfg.c.

(1) hi_longticrate

Format: #define hi_longticrate <setting value>

Specify the required result for low-precision cycle/high-precision cycle as an integer constant.
The allowed range is from 2 to 0xff. If some other specification is made, the following error
message will be displayed when kernel_def.c and kernel_cfg.c is compiled:

#error directive: “Illegal hi_longticrate”

Which setting is effective depends on the form (frequency or specified time) of the time-
management functions most often used by the system. This is generally in the range from 5 to
50.

Appendix E Optimized Timer Driver (HI7700/4)

Rev.6.00 427
REJ10B0060-0600

(2) hi_pclock

Format: #define hi_pclock <setting value>

Specify the frequency of the MCU's peripheral clock (Pφ) as a non-zero integer constant (Hz). If
some other specification is made, the following error message will be displayed when
kernel_def.c and kernel_cfg.c is compiled:

#error directive: “Illegal hi_pclock”

E.6.3 Notes on the Configurator

The following describes the items set in the configurator's [Time management function] page
window.

(1) Timer interrupt number (CFG_TIMINTNO)

Specify 0x400 which means interrupt code for channel 0 of the TMU. If some other
specification is made, the following error message will be displayed when kernel_def.c and
kernel_cfg.c is compiled:

#error directive: “Illegal CFG_TIMINTNO”

The optimized timer driver uses the following interrupt codes:

• 0x400: Channel 0 of TMU

• 0x420: Channel 1 of TMU

• 0x440: Channel 2 of TMU

Do not define handlers for these interrupts.

When, however, the overrun handler is not in use (when the def_ovr service call has not been
selected), 0x440 (channel 2) is not defined bye the optimized timer driver. In this case, channel 2
is available for user.

(2) Timer interrupt level (CFG_TIMINTLVL)

Specify same value as the kernel interrupt mask level (CFG_KNLMSKLVL). If some other
specification is made, the following error message will be displayed when kernel_cfg.c is
compiled:

#error directive: “Illegal CFG_TIMINTLVL”

(3) Time-tick cycle (CFG_TICNUME and CFG_TICDENO)

The time-tick cycle is the period of a high-precision cycle.

Appendix E Optimized Timer Driver (HI7700/4)

Rev.6.00 428
REJ10B0060-0600

E.6.4 Modifying kernel_sys.h

Add the following statement near the top of hisys\kernel_sys.h. This will include the contents of
the definition file described above.

#ifndef _HIOS_KERNEL_SYS_H

#define _HIOS_KERNEL_SYS_H

#define OPTTMR /* ← Added. */

E.7 Kernel Libraries to be Used
For the kernel libraries to be used, refer to section 5.9, Kernel Libraries.

Rev.6.00 429
REJ10B0060-0600

Appendix F DSP Standby Control (HI7700/4)

F.1 Overview
This function sets up an relation between hardware modules (DSP and X/Y memory) and the
TA_COP0 attribute (indicating whether or not a task includes DSP calculation) for tasks and
task-exception processing routines, and the kernel automatically places the related hardware
modules in the module-standby state when tasks or task exception processing routines without
TA_COP0 attribute are running (figure F.1). As a result, this function achieves low-power
consumption. Following can be selected statically as hardware modules related to the TA_COP0
attribute.

• DSP only

• X/Y memory only

• DSP + X/Y memory

Appendix D DSP Standby Control (HI7700/4)

Rev.6.00 430
REJ10B0060-0600

This function also supports the vchg_cop service call, which is used to dynamically change the
TA_COP0 attribute. Although it requires that applications be modified, using vchg_cop makes it
possible to extend the periods over which hardware resources are placed in the module-standby
state (figure F.1 (c)).

Figure F.1 Examples of Module-Standby Operation

Task A
(with TA_COP0)

Task B
(without TA_COP0) (b

)v
ch

g_
co

p
 n

ot
 in

 u
se

Task A
(without TA_COP0)

Task B
 (without TA_COP0)

vchg_cop (DSP in use) vchg_cop (DSP not in use)

(c
)v

ch
g_

co
p

 in
 u

se

Task A
(with TA_COP0)

Task B
(without TA_COP0)

(a
)u

su
al

: The DSP is in the module-standby state.

: The DSP is not in the module-standby state.

: The DSP is not in the module-standby state and the DSP is in calculation
(the hardware module, i.e., the DSP, is actually being accessed).

Appendix D DSP Standby Control (HI7700/4)

Rev.6.00 431
REJ10B0060-0600

F.2 Applicable MCUs
This function is only usable with MCUs that include a DSP, X/Y memory, or both, and at least
one of the units has a module-standby function. At the time of writing, this specification applies
to the following MCUs.

SH7727, SH7729R, SH7290, SH7294, SH7300, SH7641, SH7660, SH7710, SH7318, SH7343

F.3 Module-Standby State when Initiating Programs
When processing of a program is initiated and the DSP-standby control function has been
included, the operation of the modules with which the TA_COP0 attribute has been related (DSP
or X/Y memory) will be affected in different ways according to the type of program and whether
or not the TA_COP0 attribute has been set for that program.

We recommended that handlers, i.e., programs of those types for which 'Undefined' are indicated
in table F.1, be created such that they do not access modules associated with the TA_COP0
attribute. If such a module is to be used, have the program bring the module out of the standby
state after saving the module's standby-state information on the program side, and return the
module to the standby state before leaving the program.

Table F.1 Module Standby State at Initiating Programs

Program Module-Standby State

Task With TA_COP0: Non-standby
Without TA_COP0: Standby

Task-exception processing routine With TA_COP0: Non-standby
Without TA_COP0: Standby

Expanded service-call routine Same state as before the call

Interrupt handler Undefined

CPU-exception handler Undefined

Time-event handler Undefined

Initialization routine Undefined

When the kernel is idling (i.e., there is no executable task), a module associated with the
TA_COP0 attribute enters the standby state.

Appendix D DSP Standby Control (HI7700/4)

Rev.6.00 432
REJ10B0060-0600

F.4 Service Call for Changing the TA_COP0 Attribute (vchg_cop)
C-Language API:
 ER_UINT oldatr = vchg_cop(ATR newatr);

Parameters:
 ATR newatr R4 Attribute after changing

Return Parameters:
 ER_UINT oldatr R0 Attribute before changing (0 or a positive

value) or error code

Error Codes:
 E_RSATR [p] Invalid attribute (newatr is invalid)

 E_CTX [k] Context error (Called from non-task context)

Function:

When this call is issue, the TA_COP0 attribute of the calling task is changed as newatr. Either of
the following values can be specified for newatr:

newatr := TA_COP0 | TA_NULL

TA_COP0 (H'00000100): DSP is used

TA_NULL (H'00000000): DSP is not used

The value returned is oldatr, whether or not a TA_COP0 attribute was specified before this
service call was issued.

TA_COP0: The TA_COP0 attribute was specified before the change.

TA_NULL: The TA_COP0 attribute was not specified before the change.

When vchg_cop is called from a task, the task's TA_COP0 attribute after task termination is
restored to its state before the task was created.

When vchg_cop is called from a task-exception processing routine, the TA_COP0 attribute of
the task-exception processing routine is changed but the TA_COP0 attribute of the task itself is
not changed. When execution of the task-exception processing routine is completed, the
routine's TA_COP0 attribute is restored to the state it was assigned when the routine was
defined.

When TA_COP0 is specified for the task that does not have the TA_COP0 attribute, DSR is
initialized to 0. The other DSP registers retain their values.

Frequently issuing this service call to switch the TA_COP0 attribute on and off will increase the
overhead of module-standby control processing. Calling the service call to switch the attribute
on and off should be in units of the occurrence of DSP-calculation.

Appendix D DSP Standby Control (HI7700/4)

Rev.6.00 433
REJ10B0060-0600

Note that this service call is specific to the HI7700/4 and is not used for the service-call trace
function.

F.5 Ways to Include DSP Standby Control Function

F.5.1 Overview

This section gives information that is supplementary to the standard configuration procedure.
For details, see section 5, Configuration.

Table F.2 shows the procedures which must be followed to include the DSP-standby control
function.

Table F.2 Including the DSP-Standby Control Function

Item

DSP-Standby Control
Function not Included

DSP-Standby Control
Function Included

Creation of a definition file
(F.5.2)

Not needed Needed

Modifying kernel_sys.h
(F.5.3)

Not needed Needed

Note that no item specifically determines whether or not the vchg_cop service call is available.
Whenever the DSP-standby control function is included, the vchg_cop service call is included.

F.5.2 Creating the kernel_def_dspstby_set.h Definition File

The following information is defined in kernel_def_dspstby_set.h.

• hi_cop_stby_adr: Address of the module-standby control register

• hi_cop_stby_bit: Bit locations of the module-standby control register

When the kernel executes a task or exception processing routine with the TA_COP0 attribute,
the bits indicated by hi_cop_stby_bit, which is indicated within an 8-bit unit (SH3-DSP) or 32-
bit (SH4AL-DSP) of the address hi_cop_stby_adr, are set to 0. A module specified by
hi_cop_stby_bit is thus placed in the non-standby state. On the other hand, when the kernel
executes a task or exception processing routine without the TA_COP0 attribute, the bits
indicated by hi_cop_stby_bit, which is indicated within an 8-bit unit (SH3-DSP) or 32-bit
(SH4AL-DSP) of the address hi_cop_stby_adr, are set to 1. A module specified by
hi_cop_stby_bit will be placed in the standby state.

The kernel_def_dspstby_set.h is included from kernel_def.c and kernel_cfg.c.

Appendix D DSP Standby Control (HI7700/4)

Rev.6.00 434
REJ10B0060-0600

(1) hi_cop_stby_adr

Format: #define hi_cop_stby_adr <setting value>

Specify, as a non-zero integer constant, the address of the register that controls the module-
standby state of the DSP or X/Y memory. If some other specification is made, the following
error message will be displayed when kernel_def.c and kernel_cfg.c is compiled:

#error directive: “Illegal hi_cop_stby_adr”

(1) hi_cop_stby_bit

Format: #define hi_cop_stby_bit <setting value>

Specify the bit, which corresponds to the module to be controlled by this function in the register
specified by hi_cop_stby_adr, with the integer constant. The ranges 1 to 0xff for SH3-DSP or 1
to 0xffffffff (SH4AL-DSP) can be specified. If some other range is specified, the following error
message will be displayed when kernel_def.c and kernel_cfg.c is compiled:

#error directive: “Illegal hi_cop_stby_bit”

This specification determines the hardware modules that are associated with the TA_COP0
attribute.

Table F.3 shows the detailed values for specification with those SH3-DSP MCUs to which this
function was applicable at the time of writing.

Table F.3 Value to be Specified for Each MCUs

hi_cop_stby_bit

MCU

hi_cop_stby_adr

DSP Only

X/Y
Memory
Only

DSP + X/Y
Memory

SH7290, SH7294,
SH7300, SH7641,
SH7660, SH7710

0xa415ff88 0x10 0x1 0x11

SH7727, SH7729R 0xffffff88 (Not specifiable) 0x80 (Not specifiable)

SH7729 Not available

SH7318, SH7343 0xa4150030 (Not specifiable) 0x4000000 (Not specifiable)

Appendix D DSP Standby Control (HI7700/4)

Rev.6.00 435
REJ10B0060-0600

F.5.3 Modifying kernel_sys.h

Add the following statement near the top of hisys\kernel_sys.h. This will include the contents of
the definition file described above.

#ifndef _HIOS_KERNEL_SYS_H

#define _HIOS_KERNEL_SYS_H

#define DSPSTBY /* ← Added. */

F.6 Kernel Libraries to be Used
For the kernel libraries to be used, refer to section 5.9, Kernel Libraries.

F.7 Notes
Since the X/Y memory uses much power, relating the X/Y memory with this function has a
good effect on the levels of low-power consumption. However, note the following point with
regard to DMA transfer.

When a task A with the TA_COP0 attribute specifies the X/Y memory as the source or
destination of a DMA transfer and then starts the transfer, the transfer will not proceed correctly
if task execution is switched to a task B that does not have the TA_COP0 attribute, since the
kernel places the X/Y memory in module-standby mode during the execution of task B.

This is because access to the X/Y memory by the DMA is independent of the operation
software, while the module-standby control of the X/Y memory is synchronized with task
execution.

The following measures avert this problem:

(1) Not applying the module-standby control function to the X/Y memory.

(2) Not using DMA transfer with the X/Y memory.

(3) Not switching tasks until the completion of the DMA transfer.

Appendix D DSP Standby Control (HI7700/4)

Rev.6.00 436
REJ10B0060-0600

Rev.6.00 437
REJ10B0060-0600

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

G.1 Task and Task Exception Processing Routine

G.1.1 Initialization of FPSCR

The initial value of FPSCR of a task and a task exception processing routine is shown below.

• SH-4, SH-4A: H'00040001 (FR = 0, SZ = 0, PR = 0, DN = 1, RM = B'01)
• SH2A-FPU:

TA_COP1 is specified: H'00040001 (SZ = 0, PR = 0, DN = 1, RM = B'01)

TA_COP1 is not specified: Undefined

When floating-point calculation is executed and when one of the following compiler options is
specified, it is necessary to initialize FPSCR at the start of the entry function of the task and of
the task exception processing routine.

• fpu = double
• denormalize = on
• round = nearest

Figure G.1 shows an example for initialization of FPSCR under the following conditions:

• cpu = sh4a
• fpu = double
• denormalize = on
• round = nearest

#include <machine.h> /* Included to use */

 /* intrinsic function set_fpscr(). */

#define INI_FPSCR 0x00080000 /* FR=0, PR=1, DN=0, SZ=0, RM=B’00 */

#pragma noregsave(Task)

void Task(VP_INT exinf)

{

 set_fpscr(INI_FPSCR); /* Sets FPSCR at the start of function.
*/

 /* Task processing */

 ext_tsk();

}

Figure G.1 Example of Initialization of FPSCR in a Task

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

Rev.6.00 438
REJ10B0060-0600

G.1.2 Attributes TA_COP1 and TA_COP2

Specify attributes TA_COP1 and TA_COP2 as described in table G.1

Table G.1 Specifying Attributes TA_COP1 and TA_COP2

Case SH2A-FPU SH-4, SH-4A

Matrix calculation (both FPU register banks used) --- TA_COP1|TA_COP2

Normal floating-point calculation (only FPU register bank 0
is used.)

TA_COP1 TA_COP1

No floating-point calculation and "fpu=mix" is specified as
compiler option.

TA_COP1 * (Unnecessary)

No floating-point calculation, and "fpu=mix" is not specified
as compiler option.

(Unnecessary) (Unnecessary)

Note: This usage is not recommended.

G.2 Non-Task Context (Normal Interrupt Handler, Direct Interrupt
Handler, CPU Exception Handler, Time Event Handler,
Initialization Routine)

G.2.1 Overview

(1) Guarantee FPU Registers

When floating-point calculation is executed, these handlers need to guarantee all FPU
registers.

(2) Guarantee FPSCR

When "fpu=mix" and "fpscr=aggressive" are specified as compiler options in SH2A-FPU,
these handlers must guarantee the FPSCR register even if these handlers do not perform
floating-point calculation.

When using SH-4 or SH-4A, these handlers do not have to guarantee the FPSCR register.

(3) Initialize FPSCR

The initial FPSCR value of CPU exception handler is the same as before CPU exception.

The initial FPSCR value of the other handlers is undefined.

When these handlers perform floating-point calculation, FPSCR must be initialized as shown
in G.4.3, Handling by the Compiler at the start of the entry function of these handlers.

The following explains how to guarantee and initialize the registers.

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

Rev.6.00 439
REJ10B0060-0600

G.2.2 SH-4, SH-4A

The HI7750/4 provides the following macros for the above operations.

These macros are defined in sh4fpu.h. The "code=asmcode" compiler option must be specified
because these macros use in-line assemble function.

(1) void IniFPU_ONEBANK(T_FPU_ONEBANK *pk_save, UW ini_fpscr)

When only the current FPU register bank is used, this macro should be used at the start of the
handler function.

This macro saves the current FPU bank registers to the area pointed by pk_save, and
initializes FPSCR to ini_fpscr.

(2) void EndFPU_ONEBANK(T_FPU_ONEBANK *pk_save)

When only the current FPU register bank is used, this macro should be used at the end of the
handler function.

This macro restores the current FPU bank register contents from the area pointed by
pk_save.

(3) void IniFPU_ALLBANK(T_FPU_ALLBANK *pk_save, UW ini_fpscr)

When both FPU register banks are used, this macro should be used at the top of the handler
function.

This macro saves both FPU bank registers to the area pointed by pk_save, and initializes
FPSCR to ini_fpscr.

(4) void EndFPU_ALLBANK(T_FPU_ALLBANK *pk_save)

When both FPU register banks are used, this macro should be used at the end of the handler
function.

This macro restores both FPU bank register contents from the area pointed by pk_save.

Figure G.2 shows an example of interrupt handler to initialize FPSCR and guarantee FPU
registers.

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

Rev.6.00 440
REJ10B0060-0600

#include <sh4fpu.h> /* Include "sh4fpu.h" */

#define INI_FPSCR 0x00040001 /* FR=0, PR=0, DN=1, SZ=0, RM=B’01 */

void HandlerMain(void) /* Handler main routine */

{

 /* Handler processing */

}

void Handler(void) /* Handler entry function */

{

 T_FPU_ONEBANK area; /* For saving FPU registers */

 IniFPU_ONEBANK(&area, INI_FPSCR); /* Save FPU registers and

 initialize FPSCR */

 HandlerMain(); /* Call HandlerMain() which performs
 main processing*/

 EndFPU_ONEBANK(&area); /* Restore FPU registers */

}

Figure G.2 Example of Interrupt Handler to Initialize FPSCR and Guarantee FPU
Registers (SH-4, SH-4A)

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

Rev.6.00 441
REJ10B0060-0600

G.2.3 SH2A-FPU

The HI7000/4 provides the following macros for the above operations.

These macros are defined in sh2fapu.h. The "code=asmcode" compiler option must be specified
because these macros use in-line assemble function.

(1) void IniFPU(VT_FPU *pk_save, UW ini_fpscr)

This macro should be used at the start of the handler function.

This macro saves FPU registers including FPSCR to the area pointed by pk_save, and
initializes FPSCR to ini_fpscr.

(2) void EndFPU (VT_FPU *pk_save)

This macro should be used at the end of the handler function.

This macro restores FPU registers including FPSCR from the area pointed by pk_save.

Refer to figure G.2 for an example of interrupt handle. The interrupt handler for the SH2A-FPU
differs from the example in figure G.2 only in the header file name and macro name.

G.3 Extended Service Call Routine
The compiler handles issuing of extended service calls as calling of functions.

G.3.1 Compiler Options

The compiler handles issuing of extended service calls as calling of functions. Therefore, the
same settings should be made for the following compiler options between an extended service
call routine and its caller.

• fpu option
• fpscr option
• denormalize option
• round option

When these options are different between the caller and the extended service call routine, note
the following.

(1) Initialize FPSCR

At initiation, FPSCR.FR bits (FPU register bank) of SH-4 and SH-4A are the same as before
an extended service call, and other FPSCR bits are determined by compiler options.

When floating-point calculation is executed in an extended service call routine, it is
necessary to initialize FPSCR at the start of the entry function of the extended service call
routine according to G.4.3, Handling by the Compiler.

(2) Guarantee FPSCR

When the extended service call routine is compiled with "fpu=mix" and "fpscr=aggressive"
options, the extended service call needs to guarantee FPSCR explicitly.

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

Rev.6.00 442
REJ10B0060-0600

Figure G.3 shows an example of extended service call routine to initialize and guarantee FPSCR
register.

#include <machine.h> /* Include machine.h to use set_fpscr() */

#define INI_FPSCR 0x00080000 /* FR=0, PR=1, DN=0, SZ=0, RM=B’00 */

void ExtendedSVCRoutine(VP_INT par1)

{

 UW old_fpscr;

 old_fpscr = get_fpscr(); /* Save FPSCR */

 set_fpscr(INI_FPSCR); /* Initialize FPSCR */

 /* Extended service call routine processing */

 set_fpscr(old_fpscr); /* Restore FPSCR */

}

Figure G.3 Example of Extended Service Call Routine to Initialize and Guarantee
FPSCR Register

G.3.2 Called from Task Context

Table G.2 shows the attributes required for the calling task and task exception processing
routine.

Table G.2 Required Attributes TA_COP1 and TA_COP2 for Caller

Case SH2A-FPU SH-4, SH-4A

Matrix calculation (both FPU register banks used) --- TA_COP1|TA_COP2

Normal floating-point calculation (only FPU register bank 0
is used.)

TA_COP1 TA_COP1

No floating-point calculation and "fpu=mix" is specified as
compiler option.

TA_COP1 * (Unnecessary)

No floating-point calculation, and "fpu=mix" is not specified
as compiler option.

(Unnecessary) (Unnecessary)

Note: This usage is not recommended.

G.3.3 Called from Non-Task Context

When floating-point calculation is executed, the calling programs such as an interrupt handler
need to guarantee all FPU registers. For details, refer to appendix G.2, Non-Task Context
(Normal Interrupt Handler, Direct Interrupt Handler, CPU Exception Handler, Time Event
Handler, Initialization Routine).

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

Rev.6.00 443
REJ10B0060-0600

G.4 Information for Reference

G.4.1 States on the Initiation of Tasks and Handlers

Table G.3 shows the FPSCR states on the initiation of tasks and handlers

Table G.3 States on the Initiation of Tasks and Handlers

State at Initiation

Task and Task
Exception
Processing
Routine

Extended
Service Call
Routine

Interrupt and
Time Event
Handler, and
Initialization
Routine

CPU
Exception
Handler
(Including
TRAPA)

Value of FPSCR H’00040001

 Precision mode

(FPSCR.PR)

Single precision
(0)

 Denormalization mode

(FPSCR.DN) *1

Handled as zero
(1)

 Rounding mode

(FPSCR.RM)

Rounded to zero
(B’01)

 Transfer size mode
(FPSCR.SZ)

32 bits (0)

 FPU register bank
(FPSCR.FR) *2

Bank 0 (0)

 Other bits of FPSCR 0

Same as
before the
extended
service call
was issued

Undefined Same as before
the exception
occurred

Notes: 1. In SH2A-FPU, DN is always 1.
 2. Only in SH-4 and SH-4A

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

Rev.6.00 444
REJ10B0060-0600

G.4.2 FPSCR Structure
31 22 21 20 19 18 17 12 11 7 6 2 1 0

Reserved FR SZ PR DN Cause Enable Flag RM

Bit Meaning

0 Bank 0 21 FR FPU register
bank *1

1 Bank 1

0 The data size of the FMOV instruction is 32 bits. 20 SZ Transfer size
mode

1 The data size of the FMOV instruction is a 32-bit register pair (64 bits).

0 Single precision 19 PR Precision
mode

1 Double precision

0 A denormalized number is treated as such. 18 DN Denormaliza
tion mode *2

1 A denormalized number is treated as zero.

17-12 Cause FPU exception factor field

11-7 Enable FPU exception enable field

6-2 Flag FPU exception flag field

B’00 Round to Nearest 1,0 RM Rounding
mode

B’01 Round to Zero

Notes: 1. Only in SH-4 and SH-4A

 2. In SH2A-FPU, DN is always 1.

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

Rev.6.00 445
REJ10B0060-0600

G.4.3 Handling by the Compiler

This section explains handling by compiler. The compiler never generates any object code to
change the FPSCR when "Single" or "Double" has been specified as the FPU option.

(1) FPSCR.PR (Precision mode)

Table G.4 Handling of the FPSCR.PR Bit by the Compiler

Compiler Option

FPU

Option

FPSCR

Option *3

Precision Mode Assumed
by the Compiler on Entry
to Functions (FPSCR.PR
Bit)*1

Precision Mode
at the End of the
Function*2 Remarks

Single (Specification
disabled)

Single precision (0) Single precision (0)

Double (Specification
disabled)

Double precision (1) Double precision (1)

The compiler does
not generate any
object code to
change the PR bit.

Safe Single precision (0) Single precision (0) No
specification

(Mix)
Aggressive Single precision (0) Undefined

Notes: 1. The compiler assumes this precision mode in generating code at the top of the
function.

 2. The compiler generates code to select this precision mode at the end of the function.
 3. Compiler V5.1 does not support this FPSCR option; treatment is the same as

‘aggressive’.

(2) FPSCR.DN (Denormalization mode) (only in SH-4 and SH-4A)

Table G.5 Handling of the FPSCR.DN Bit by the Compiler

Compiler Option

Denormalize Option
Denormalization Mode Assumed by
the Compiler (FPSCR.DN Bit)* Remarks

OFF A denormalized number is treated as zero. (1)

ON A denormalized number is treated as such. (0)

The compiler does not generate
any object code to change the
DN bit.

Note: The compiler assumes this denormalization mode in generating code at the top of the
function.

Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A

Rev.6.00 446
REJ10B0060-0600

(1) FPSCR.RM (Rounding mode)

Table G.6 Handling of the FPSCR.RM Bits by the Compiler

Compiler Option

Round Option
Denormalization Mode Assumed
by the Compiler (FPSCR.DN Bit)* Remarks

Zero Round to Zero (B’01)

Nearest Round to Nearest (B’00)

The compiler does not generate any object
code to change the RM bits.

Note: The compiler assumes this rounding mode in generating code at the top of the function.

(2) FPSCR.SZ (transfer size mode)

The compiler always assumes SZ = 0 (the data size of the FMOV instruction is 32 bits.) and
does not generate any object code to change the SZ bit.

(3) FPSCR.FR (FPU register bank) (only in SH-4 and SH-4A)

The compiler does not generate any object code to change the FR bit.

However, in the built-in functions st_ext() and ld_ext(), the FR bit is temporarily changed within
these function. The value of the FR bit on return from these functions is the same as the value
when the function was called.

Rev.6.00 447
REJ10B0060-0600

Appendix H New Functions of HI7000/4 V.2

H.1 Support of SH-2A and SH2A-FPU

H.1.1 FPU (SH2A-FPU) (V.2.00 Release 00)

The TA_COP1 attribute is added for tasks and task exception processing routines.

When TA_COP1 is specified, the FPU registers are added as context registers for the task and
the task exception processing routine and the FPU can be used in a multitasking environment.

The [Uses FPU(TA_COP1)] check box is added to [Creation of Task] and [Definition of Task
Exception Processing Routine] dialog box of the configurator,

Related Pages:
• p.76: Section 3.4.1, Create Task

• p.111: Section 3.6.1, Define Task Exception Processing Routine (def_tex, idef_tex)

• p.373: Section 5.11.1, CPU Options for the Compiler and Assembler

• p. 437: Appendix G, Notes on FPU of SH2A-FPU, SH-4, SH4A

H.1.2 TBR Register (V.2.00 Release 00)

As the usage of TBR register, one of the following three can be chosen.

(1) Kernel does not manage

(2) Only for service call

(3) Task context

This is chosen by CFG_TBR in the [Kernel Execution Condition] page of configurator.

Related Pages:
• p.295: Section 4.2.8, TBR Register (SH-2A, SH2A-FPU)

• p. 356: Item No. 1.4 in table 5.5 of section 5.4.6, Configurator Settings

• p.373: Section 5.11.1, CPU Options for the Compiler and Assembler

Appendix H New Functions of HI7000/4 V2

Rev.6.00 448
REJ10B0060-0600

H.1.3 Register Banks (V.2.00 Release 00, V.2.01 Release 00 and V.2.02 Release 00)

In V.2.00 Release 00, the [CFG_REGBANK] checkbox was included, allowing selection of
whether or not to use register banks with all interrupts other than the NMI and UBC interrupts.

In V.2.02 Release 00, the [CFG_REGBANK] checkbox was replaced by a combo box,
extending the above capability by allowing the user to select whether or not to use register banks
with interrupts at each of the individual interrupt priority levels.

Moreover, in V.2.01 Release 00, the [CFG_IBNR_ADR] edit box was added to the [Interrupt
Handler/CPU Exception Handler] page of the configurator, allowing selection of the IBNR
address for the register banks. This edit box was necessary because a fixed IBNR address of
H’fffe080e was assumed in previous versions of the kernel. Since the IBNR of some processors
is allocated to different addresses, the previous fixed setting did not allow usage of the register
banks in these processors.

Related Pages:
• p. 296: Section 4.2.9, Register Banks (SH-2A, SH2A-FPU)

• p.307: Section 4.8, Interrupt Handlers

• p.359: Item No. 6.5 and 6.6 in table 5.5 of section 5.4.6, Configurator Settings

H.2 Specifying Address of Task Stack, Fixed-Size Memory Pool, and
Variable-Size Memory Pool (V.2.00 Release 00)

In the previous version, it was not possible to specify the addresses of task stacks, fixed-size
memory pools, and variable-size memory pools at the time of creation of these objects. These
areas were always allocated to respective specific areas managed by the kernel.

In V.2, the user can also allocate each area and can specify the address at each object creation.

Thereby, the user can allocate each task stack or memory pool area to an arbitrary memory
address according to the purpose of use. For example, only a specific task uses a stack in the
high-speed on-chip RAM.

Related Pages:

• p.13: Section 2.6.2, Task Creation

• p. 76: Section 3.4.1, Create Task

• p. 176: Section 3.13.1, Create Fixed-Size Memory Pool

• p. 186: Section 3.14.1, Create Variable-Size Memory Pool

Appendix H New Functions of HI7000/4 V2

Rev.6.00 449
REJ10B0060-0600

H.3 Management Method of Fixed-Size Memory Pool (V.2.00 Release
00)

In the previous version, the kernel management table for each memory block is allocated in the
memory pool area.

In V.2, the user can also allocate the management table area and can specify the table area
address at creation. In this case, the memory pool area does not include management tables.

By combining this management method with the new function given in appendix H.2,
Specifying Address of Task Stack, Fixed-Size Memory Pool, and Variable-Size Memory Pool, a
memory block can be acquired with a specific offset address as follows for example.

• Parameters for fixed-size memory pool creation

⎯ Address of fixed-size memory pool = H'0c000000
⎯ Block size = H'1000 (4 Kbytes)
⎯ Number of blocks = 4

In this case, one of memory blocks [A], [B], [C], and [D] shown below is acquired. Each
memory block is aligned with a 4-Kbyte boundary.

Address

H'0C000000 --> Memory block [A]

H'0C001000 --> Memory block [B]

H'0C002000 --> Memory block [C]

H'0C003000 --> Memory block [D]

In this new management method, member mpfmb is added to the T_CMPF structure which is
used to create fixed-size memory pool. The mpfmb member indicates the address of the
management table area.

The conventional or new management method is chosen by CFG_MPFMANAGE in [Fixed-size
Memory Pool] page of the configurator.

Note that both methods cannot be used simultaneously.

Related Pages:
• p. 176: Section 3.13.1, Create Fixed-Size Memory Pool

• p. 356: Item No. 17.3 in table 5.5 of section 5.4.6, Configurator Settings

Appendix H New Functions of HI7000/4 V2

Rev.6.00 450
REJ10B0060-0600

H.4 Direct Interrupt Handler (V.2.00 Release 00 and V.2.02 Release 00)
In the previous version (V1), issuing of service calls by direct interrupt handlers was forbidden.

In V.2.00 Release 00, direct interrupt handlers can issue service calls.

Note that the direct interrupt handler which level is higher than the kernel interrupt mask level
(CFG_KNLMSKLVL) must not call a service call. This specification is the same as the previous
version.

In V.2.02 Release 00, it is also possible to define a direct interrupt handler by issuing a def_inh
or idef_inh service call.

H.5 Macros for Calculating Size (V.2.00 Release 00)
The following macros are added.

(1) SIZE mpfsz = TSZ_MPF(UINT blkcnt, UINT blksz)

The size of fixed-size memory pool area required to hold the blkcnt number of blksz-byte
memory blocks (bytes)

(2) SIZE size = VTSZ_MPFMB(UINT blkcnt, UINT blksz)

The size of fixed-size memory pool management area required to hold the blkcnt number of
blksz-byte memory blocks (bytes)

(3) SIZE mplsz = TSZ_MPL(UINT blkcnt, UINT blksz)

The size of variable-size memory pool area required to hold the blkcnt number of blksz-byte
memory blocks (target byte size)

Related Pages:
• p.290: Table 4.1 in section 4.1.1, Header File

H.6 Extension of Maximum Vector Number (V.2.00 Release 00)
The maximum vector number that can be specified for CFG_MAXVCTNO through the
configurator is extended from 255 to 511.

Related Pages:
• p.236: Table 3.62 in section 3.20, Interrupt Management

• p. 245: Table 3.68 in section 3.22, System Configuration Management

Appendix H New Functions of HI7000/4 V2

Rev.6.00 451
REJ10B0060-0600

H.7 ID Name (V.2.00 Release 00)
In the previous version, ID names can be specified only when ID numbers are automatically
assigned.

In V.2, ID names can be specified to all objects.

Table H.1 shows the additional functions in V.2 about ID names.

Table H.1 Additional Functions about ID Names

Kernel Side (kernel_id_sys.h)

Kernel Environment Side
(kernel_id.h)

Version

Automatic
ID Number
Assignment

Specify ID Name

Automatic
ID Number
Assignment

Specify ID Name

Previous version Impossible Possible only for
specifying "Auto" as
ID Number

V.2.00 or later

Impossible

Possible

Possible

Possible

Related Pages:
• p.292: Section 4.1.1(3), Header Files for ID Name

• p. 353: Section 5.4.4(1), kernel_id.h, kernel_id_sys.h

H.8 Support of Little Endian in SH-2 (V.2.00 Release 01)
V.2.00 Release 01 supports the little endian mode in the SH-2.

H.9 Improvement of Variable-Size Memory Pool
(V.2.01 Release 00)

Selecting CFG_NEWMPL added to the configurator allows the following improvements.

(1) The performace to aquaire and release memory blocks

In applications that use a large number of memory blocks, the performance to aquaire and
release memory blocks are faster than when CFG_NEWMPL is not selected.

(2) Reduced fragmentation of free space

Selecting CFG_NEWMPL generally retards the fragmentation of free memory space, but the
newly supported VTA_UNFRAGMENT attribute further reduces fragmentation. Although
specifying the VTA_UNFRAGMENT attribute generally helps in reducing fragmentation,
the degree of fragmentation depends on how the memory pools are used.

To support the VTA_UNFRAGMENT attribute, the following macro has been added.

 SIZE mplsz = VTSZ_MPLMB(UINT sctnum)

 Size of the management area for variable-size memory pool with attribute
 VTA_UNFRAGMENT (bytes)

Appendix H New Functions of HI7000/4 V2

Rev.6.00 452
REJ10B0060-0600

When CFG_NEWMPL is selected, new members mpfmb, minblksz, and sctnum are added to
the T_CMPL structure which is used to create variable-size memory pool. Member mpfmb
indicates the address of the management table area, minblksz indicates the minimum block size,
and sctnum indicates the number of sectors. These settings are ignored when the
VTA_UNFRAGMENT attribute is not specified.

Note, the use size of stack increases generally when CFG_NEWMPL is selected.

Related Pages:
• p. 40: Section 2.15.2, Controlling Fragmentation of Free Space

• p. 186: Section 3.14.1, Create Variable-Size Memory Pool

• p. 363: Item No. 18.3 in table 5.5 of section 5.4.6, Configurator Settings

• p. 405: Appendix C Calculation of Work Area Size

H.10 Initial Value of DSR (V.2.01 Release 00)
The initial value of DSR in the task with the TA_COP0 attribute and its task exception
processing routine is changed from an undefined value to 0.

Related Pages:
• p. 337: Section 4.13, Using the DSP in Programs (for HI7000/4 and HI7700/4 only)

H.11 Initial Value of SR in Task Exception Processing Routine
(V.2.01 Release 00)

The initial value of SR in the task exception processing routine is changed as follows.

Previous version: Same value as in the task before initiation
V.2.01: H'00000000

H.12 Handling of Vector Numbers 16 to 31 (V.2.01 Release 00)
Handlers can be defined for all of these vector numbers in V.2.01 Release 00. In V.2.02 Release
00, however, no handler can be defined for vector number 26 because it is now used by the
kernel.

Appendix H New Functions of HI7000/4 V2

Rev.6.00 453
REJ10B0060-0600

H.13 Lifting of Restriction concerning Structure Alignment (V.2.01
Release 00)

In the previous version, there is a restriction regarding the pack option and #pragma pack
directive for the compiler. This restriction does not apply with V.2.01 and the following related
note has been removed from this version of the user's manual.

The source program which uses the variable of the structure form defined by the kernel should
surely specify "pack=4". Moreover, do not declare the variable of the structure form defined by
the kernel as "#pragma pack 1". For kernel_def.c and kernel_cfg.c, be sure to specify "pack=4"
as an option of the compiler.

H.14 [Open the file used last time] Command for the Configurator
(V.2.02 Release 00)

A new [Options] menu has been added to the menu bar and contains an [Open the file used last
time] item. If you select this item, the configurator will automatically open the last file to be
used whenever it starts up.

Appendix H New Functions of HI7000/4 V2

Rev.6.00 454
REJ10B0060-0600

Rev.6.00 455
REJ10B0060-0600

Appendix I New Functions of HI7700/4 V.2

I.1 Support of SH4AL-DSP (with Extended Function) (V.2.01 Release
00)

The cache support library (shx2_cache_???.lib) for the SH4AL-DSP (with extended function) is
added.

I.2 Specifying Address of Task Stack, Fixed-Size Memory Pool, and
Variable-Size Memory Pool (V.2.01 Release 00)

In the previous version, it was not possible to specify the addresses of task stacks, fixed-size
memory pools, and variable-size memory pools at the time of creation of these objects. These
areas were always allocated to respective specific areas managed by the kernel.

In V.2, the user can also allocate each area and can specify the address at each object creation.

Thereby, the user can allocate each stack or memory pool area to an arbitrary memory address
according to the purpose of use. For example, only a specific task uses a stack in the high-speed
on-chip RAM.

Related Pages:
• p. 13: Section 2.6.2, Task Creation

• p. 76: Section 3.4.1, Create Task

• p. 176: Section 3.13.1, Create Fixed-Size Memory Pool

• p. 186: Section 3.14.1, Create Variable-Size Memory Pool

I.3 Management Method of Fixed-Size Memory Pool (V.2.01 Release
00)

In the previous version, the kernel management table for each memory block is allocated in the
memory pool area.

In V.2, the user can also allocate the management table area and can specify the table area
address at creation. In this case, the memory pool area does not include management tables.

Appendix I New Functions of HI7700/4 V2

Rev.6.00 456
REJ10B0060-0600

By combining this management method with the new function given in appendix I.2, Specifying
Address of Task Stack, Fixed-Size Memory Pool, and Variable-Size Memory Pool (V.2.01
Release 00), a memory block can be acquired with a specific offset address as follows for
example.

• Parameters for fixed-size memory pool creation

⎯ Address of fixed-size memory pool = H'0c000000
⎯ Block size = H'1000 (4 Kbytes)
⎯ Number of blocks = 4

In this case, one of memory blocks [A], [B], [C], and [D] shown below is acquired. Each
memory block is aligned with a 4-Kbyte boundary.

Address

H'0C000000 --> Memory block [A]

H'0C001000 --> Memory block [B]

H'0C002000 --> Memory block [C]

H'0C003000 --> Memory block [D]

In this new management method, member mpfmb is added to the T_CMPF structure which is
used to create fixed-size memory pool. The mpfmb member indicates the address of the
management table area.

The conventional or new management method is chosen by CFG_MPFMANAGE in [Fixed-size
Memory Pool] page of the configurator.

Note that both methods cannot be used simultaneously.

Related Pages:
• p. 176: Section 3.13.1, Create Fixed-Size Memory Pool (cre_mpf, icre_mpf)

• p. 356: Item No. 17.3 in table 5.5 of section 5.4.6, Configurator Settings

Appendix I New Functions of HI7700/4 V2

Rev.6.00 457
REJ10B0060-0600

I.4 Improvement of Variable-Size Memory Pool (V.2.01 Release 00)
Selecting CFG_NEWMPL added to the configurator allows the following improvements.

(1) The performace to aquaire and release memory blocks

In applications that use a large number of memory blocks, the performance to aquaire and
release memory blocks are faster than when CFG_NEWMPL is not selected.

(2) Reduced fragmentation of free space

Selecting CFG_NEWMPL generally retards the fragmentation of free memory space, but the
newly supported VTA_UNFRAGMENT attribute further reduces fragmentation. Although
specifying the VTA_UNFRAGMENT attribute generally helps in reducing fragmentation,
the degree of fragmentation depends on how the memory pools are used.

To support the VTA_UNFRAGMENT attribute, the following macro has been added.

 SIZE mplsz = VTSZ_MPLMB(UINT sctnum)

 Size of the management area for variable-size memory pool with attribute
 VTA_UNFRAGMENT (bytes)

When CFG_NEWMPL is selected, new members mpfmb, minblksz, and sctnum are added to
the T_CMPL structure which is used to create variable-size memory pool. Member mpfmb
indicates the address of the management table area, minblksz indicates the minimum block size,
and sctnum indicates the number of sectors. These settings are ignored when the
VTA_UNFRAGMENT attribute is not specified.

Note, the use size of stack increases generally when CFG_NEWMPL is selected.

Related Pages:
• p. 40: Section 2.15.2, Controlling Fragmentation of Free Space

• p. 186: Section 3.14.1, Create Variable-Size Memory Pool (cre_mpl, icre_mpl)

• p. 363: Item No. 18.3 in table 5.5 of section 5.4.6, Configurator Settings

• p. 405: Appendix C Calculation of Work Area Size

Appendix I New Functions of HI7700/4 V2

Rev.6.00 458
REJ10B0060-0600

I.5 Macros for Calculating Size (V.2.01 Release 00)
The following macros are added.

(1) SIZE mpfsz = TSZ_MPF(UINT blkcnt, UINT blksz)

The size of fixed-size memory pool area required to store the blkcnt number of blksz-byte
memory blocks (bytes)

(2) SIZE size = VTSZ_MPFMB(UINT blkcnt, UINT blksz)

The size of fixed-size memory pool management area required to hold the blkcnt number of
blksz-byte memory blocks (bytes)

(3) SIZE mplsz = TSZ_MPL(UINT blkcnt, UINT blksz)

The size of variable-size memory pool area required to hold the blkcnt number of blksz-byte
memory blocks (target byte size)

(4) SIZE mplsz = VTSZ_MPLMB(UINT sctnum)

The size of management area for variable-size memory pool with the VTA_UNFRAGMENT
attribute (bytes)

Related Pages:
• p.290: Table 4.1 in section 4.1.1, Header File

I.6 Initial Value of DSR (V.2.01 Release 00)
The initial value of DSR in the task with the TA_COP0 attribute and its task exception
processing routine is changed from an undefined value to 0. Note that this change also applies to
V.1.03 Release 02.

When the TA_COP0 specification is switched from off to on through the vchg_cop service call,
the kernel does not initialize DSR in the previous version, but in V.2.01, the kernel initializes it
to 0.

Related Pages:
• p. 337: Section 4.13, Using the DSP in Programs (for HI7000/4 and HI7700/4 only)

Appendix I New Functions of HI7700/4 V2

Rev.6.00 459
REJ10B0060-0600

I.7 Initial Value of SR in Task Exception Processing Routine (V.2.01
Release 00)

The initial value of SR in the task exception processing routine is changed as follows.

Previous version: Same value as in the task before initiation
V.2.01: H'40001000 when either CFG_DSP or CFG_CACLOC is selected, or H'40000000 when
neither of them is selected

I.8 Extension of Maximum Exception Code (CFG_MAXVCTNO)
(V.2.01 Release 00)

The maximum exception code that can be specified for CFG_MAXVCTNO through the
configurator is extended from 0xfe0 to 0x3fe0.

I.9 Handling of TRAPA #16 to #31 (V.2.01 Release 00)
Trap exception handlers can be defined for these numbers in V.2.01.

I.10 Release of Restriction concerning Structure Alignment
(V.2.01 Release 00)

In the previous version, there is a restriction about the pack option and #pragma pack of the
compiler. This restriction is not applied to V.2.01 and the following related note is removed
from this user's manual.

The source program which uses the variable of the structure form defined by the kernel should
surely specify "pack=4". Moreover, do not declare the variable of the structure form defined by
the kernel as "#pragma pack 1". For kernel_def.c and kernel_cfg.c, be sure to specify "pack=4"
as an option of the compiler.

Appendix I New Functions of HI7700/4 V2

Rev.6.00 460
REJ10B0060-0600

I.11 ID Name (V.2.01 Release 00)
In the previous version, ID names can be specified only when ID numbers are automatically
assigned.

In V.2, ID names can be specified to all objects.

Table I.1 shows the additional functions in V.2 about ID names.

Table I.1 Additional Functions about ID Names

Kernel Side (kernel_id_sys.h)

Kernel Environment Side
(kernel_id.h)

Version

Automatic
ID Number
Assignment

Specify ID Name

Automatic
ID Number
Assignment

Specify ID Name

Previous version Impossible Possible only for
specifying "Auto"
as ID Number

V.2.01 or later

Impossible

Possible

Possible

Possible

Related Pages:
• p.292: Section 4.1.1(3), Header Files for ID Name

• p. 353: Section 5.4.4(1), kernel_id.h, kernel_id_sys.h

I.12 [Open the file used last time] Command for the Configurator
(V.2.02 Release 00)

A new [Options] menu has been added to the menu bar and contains an [Open the file used last
time] item. If you select this item, the configurator will automatically open the last file to be
used whenever it starts up.

Rev.6.00 461
REJ10B0060-0600

Appendix J New Functions of HI7750/4 V.2

J.1 Support of SH-4A (with Extended Function) (V.2.01 Release 00)
The cache support library (shx2_cache_???.lib) for the SH-4A (with extended function) is
added.

J.2 Specifying Address of Task Stack, Fixed-Size Memory Pool, and
Variable-Size Memory Pool (V.2.01 Release 00)

In the previous version, it was not possible to specify the addresses of task stacks, fixed-size
memory pools, and variable-size memory pools at the time of creation of these objects. These
areas were always allocated to respective specific areas managed by the kernel.

In V.2, the user can also allocate each area and can specify the address at each object creation.

Thereby, the user can allocate each stack or memory pool area to an arbitrary memory address
according to the purpose of use. For example, only a specific task uses a stack in the high-speed
on-chip RAM.

Related Pages:
• p.13: Section 2.6.2, Task Creation

• p. 76: Section 3.4.1, Create Task

• p. 176: Section 3.13.1, Create Fixed-Size Memory Pool (cre_mpf, icre_mpf)

• p. 186: Section 3.14.1, Create Variable-Size Memory Pool (cre_mpl, icre_mpl)

J.3 Management Method of Fixed-Size Memory Pool (V.2.01 Release
00)

In the previous version, the kernel management table for each memory block is allocated in the
memory pool area.

In V.2, the user can also allocate the management table area and can specify the table area
address at creation. In this case, the memory pool area does not include management tables.

Appendix J New Functions of HI7750/4 V2

Rev.6.00 462
REJ10B0060-0600

By combining this management method with the new function given in appendix J.2, Specifying
Address of Task Stack, Fixed-Size Memory Pool, and Variable-Size Memory Pool (V.2.01
Release 00), a memory block can be acquired with a specific offset address as follows for
example.

• Parameters for fixed-size memory pool creation

⎯ Address of fixed-size memory pool = H'0c000000
⎯ Block size = H'1000 (4 Kbytes)
⎯ Number of blocks = 4

In this case, one of memory blocks [A], [B], [C], and [D] shown below is acquired. Each
memory block is aligned with a 4-Kbyte boundary.

Address

H'0C000000 --> Memory block [A]

H'0C001000 --> Memory block [B]

H'0C002000 --> Memory block [C]

H'0C003000 --> Memory block [D]

In this new management method, member mpfmb is added to the T_CMPF structure which is
used to create fixed-size memory pool. The mpfmb member indicates the address of the
management table area.

The conventional or new management method is chosen by CFG_MPFMANAGE in [Fixed-size
Memory Pool] page of the configurator.

Note that both methods cannot be used simultaneously.

Related Pages:
• p. 176: Section 3.13.1, Create Fixed-Size Memory Pool (cre_mpf, icre_mpf)

• p. 356: Item No. 17.3 in table 5.5 of section 5.4.6, Configurator Settings

Appendix J New Functions of HI7750/4 V2

Rev.6.00 463
REJ10B0060-0600

J.4 Improvement of Variable-Size Memory Pool (V.2.01 Release 00)
Selecting CFG_NEWMPL added to the configurator allows the following improvements.

(1) The performace to aquaire and release memory blocks

In applications that use a large number of memory blocks, the performance to aquaire and
release memory blocks are faster than when CFG_NEWMPL is not selected.

(2) Reduced fragmentation of free space

Selecting CFG_NEWMPL generally retards the fragmentation of free memory space, but the
newly supported VTA_UNFRAGMENT attribute further reduces fragmentation. Although
specifying the VTA_UNFRAGMENT attribute generally helps in reducing fragmentation,
the degree of fragmentation depends on how the memory pools are used.

To support the VTA_UNFRAGMENT attribute, the following macro has been added.

 SIZE mplsz = VTSZ_MPLMB(UINT sctnum)

 Size of the management area for variable-size memory pool with attribute
 VTA_UNFRAGMENT (bytes)

When CFG_NEWMPL is selected, new members mpfmb, minblksz, and sctnum are added to
the T_CMPL structure which is used to create variable-size memory pool. Member mpfmb
indicates the address of the management table area, minblksz indicates the minimum block size,
and sctnum indicates the number of sectors. These settings are ignored when the
VTA_UNFRAGMENT attribute is not specified.

Note, the use size of stack increases generally when CFG_NEWMPL is selected.

Related Pages:
• p. 40: Section 2.15.2, Controlling Fragmentation of Free Space

• p. 186: Section 3.14.1, Create Variable-Size Memory Pool (cre_mpl, icre_mpl)

• p. 363: Item No. 18.3 in table 5.5 of section 5.4.6, Configurator Settings

• p. 405: Appendix C, Calculation of Work Area Size

Appendix J New Functions of HI7750/4 V2

Rev.6.00 464
REJ10B0060-0600

J.5 Macros for Calculating Size (V.2.01 Release 00)
The following macros are added.

(1) SIZE mpfsz = TSZ_MPF(UINT blkcnt, UINT blksz)

The size of fixed-size memory pool area required to store the blkcnt number of blksz-byte
memory blocks (bytes)

(2) SIZE size = VTSZ_MPFMB(UINT blkcnt, UINT blksz)

The size of fixed-size memory pool management area required to hold the blkcnt number of
blksz-byte memory blocks (bytes)

(3) SIZE mplsz = TSZ_MPL(UINT blkcnt, UINT blksz)

The size of variable-size memory pool area required to hold the blkcnt number of blksz-byte
memory blocks (target byte size)

(4) SIZE mplsz = VTSZ_MPLMB(UINT sctnum)

The size of management area for variable-size memory pool with the VTA_UNFRAGMENT
attribute (bytes)

Related Pages:
• p.290: Table 4.1 in section 4.1.1, Header File

J.6 Initial Value of SR in Task Exception Processing Routine
(V.2.01 Release 00 or Later)

The initial value of SR in the task exception processing routine is changed as follows.

Previous version: Same value as in the task before initiation
V.2.01: H'40000000

J.7 Extension of Maximum Exception Code (CFG_MAXVCTNO)
(V.2.01 Release 00)

The maximum exception code that can be specified for CFG_MAXVCTNO) through the
configurator is extended from 0xfe0 to 0x3fe0.

Appendix J New Functions of HI7750/4 V2

Rev.6.00 465
REJ10B0060-0600

J.8 Handling of TRAPA #16 to #31 (V.2.01 Release 00)
Trap exception handlers can be defined for these numbers in V.2.01.

J.9 Release of Restriction concerning Structure Alignment (V.2.01
Release 00)

In the previous version, there is a restriction about the pack option and #pragma pack of the
compiler. This restriction is not applied to V.2.01 and the following related note is removed
from this user's manual.

The source program which uses the variable of the structure form defined by the kernel should
surely specify "pack=4". Moreover, do not declare the variable of the structure form defined by
the kernel as "#pragma pack 1". For kernel_def.c and kernel_cfg.c, be sure to specify "pack=4"
as an option of the compiler.

J.10 ID Name (V.2.01 Release 00)
In the previous version, ID names can be specified only when ID numbers are automatically
assigned.

In V.2, ID names can be specified to all objects.

Table J.1 shows the additional functions in V.2 about ID names.

Table J.1 Additional Functions about ID Names

Kernel Side (kernel_id_sys.h)

Kernel Environment Side
(kernel_id.h)

Version

Automatic
ID Number
Assignment

Specify ID Name

Automatic
ID Number
Assignment

Specify ID Name

Previous version Impossible Possible only for
specifying "Auto" as
ID Number

V.2.01 or later

Impossible

Possible

Possible

Possible

Related Pages:
• p.292: Section 4.1.1(3), Header Files for ID Name

• p. 353: Section 5.4.4(1), kernel_id.h, kernel_id_sys.h

J.11 [Open the file used last time] Command for the Configurator
(V.2.02 Release 00)

A new [Options] menu has been added to the menu bar and contains an [Open the file used last
time] item. If you select this item, the configurator will automatically open the last file to be
used whenever it starts up.

Appendix J New Functions of HI7750/4 V2

Rev.6.00 466
REJ10B0060-0600

Renesas Microcomputer Development Environment System
User's Manual
HI7000/4 Series (HI7000/4 V.2.02, HI7700/4 V.2.02,
and HI7750/4 V.2.02)

Publication Date: Rev.6.00, January 4, 2006
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Customer Support Department
 Global Strategic Communication Div.
 Renesas Solutions Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 205, AZIA Center, No.133 Yincheng Rd (n), Pudong District, Shanghai 200120, China
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510

RENESAS SALES OFFICES

Colophon 5.0

2-6-2, Ote-machi, Chiyoda-ku, Tokyo,100-0004, Japan

HI7000/4 Series
(HI7000/4 V.2.02, HI7700/4 V.2.02, and HI7750/4 V.2.02)

User’s Manual

	Cover
	Keep safety first in your circuit designs!
	Notes regarding these materials
	Preface
	Contents
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Operating Environment
	1.4 Installation
	1.5 Target Product of This Manual

	Section 2 Kernel
	2.1 Overview
	2.2 Functions
	2.3 Processing Units and Precedence
	2.4 System State
	2.4.1 Task Context State and Non-Task Context State
	2.4.2 Dispatch-Disabled State/Dispatch-Enabled State
	2.4.3 CPU-Locked State/CPU-Unlocked State

	2.5 Objects
	2.6 Tasks
	2.6.1 Task State and Transition
	2.6.2 Task Creation
	2.6.3 Task Initiation
	2.6.4 Task Scheduling
	2.6.5 Task Termination and Deletion
	2.6.6 Task Stack
	2.6.7 Shared Stack Function
	2.6.8 Task Execution Mode
	2.6.9 Exclusive Control
	2.6.10 Task Event Flags

	2.7 Task Exception Processing
	2.8 Semaphore
	2.9 Event Flag
	2.10 Data Queue
	2.11 Mailbox
	2.12 Mutex
	2.13 Message Buffer
	2.14 Fixed-Size Memory Pool
	2.15 Variable-Size Memory Pool
	2.15.1 Overview
	2.15.2 Controlling Fragmentation of Free Space
	2.15.3 Management of Variable-Size Memory Pool

	2.16 Time Management
	2.16.1 Cyclic Handler
	2.16.2 Alarm Handler
	2.16.3 Overrun Handler
	2.16.4 Notes on Time Management

	2.17 System State Management
	2.17.1 System Down
	2.17.2 Service Call Trace Function

	2.18 Interrupt Management and System Configuration Management
	2.18.1 Resetting the CPU and Initiating the Kernel
	2.18.2 Interrupt Handlers
	2.18.3 Disabling Interrupts
	2.18.4 Kernel Interrupt Mask Level (CFG_KNLMSKLVL):
	2.18.5 CPU Exception

	2.19 Service Call Management
	2.20 Cache Support (only for HI7700/4 and HI7750/4)
	2.21 Kernel Idling
	2.22 Pre-fetch Function (only for HI7700/4 and HI7750/4)
	2.23 Optimized Timer Driver (only for HI7700/4)
	2.24 DSP Standby Control Function (only for HI7700/4)

	Section 3 Service Calls
	3.1 Overview
	3.2 Service Call Interface
	3.2.1 C Language API
	3.2.2 Assembly Language API
	3.2.3 Guarantee of Register Contents after Issuing Service Call
	3.2.4 Return Value of Service Call and Error Code
	3.2.5 System State and Service Calls
	3.2.6 Service Calls not in the μITRON4.0 Specification

	3.3 Service Call Description Form
	3.4 Task Management
	3.4.1 Create Task<Using Dynamic Stack> (cre_tsk, icre_tsk) (acre_tsk, iacre_tsk: Assign Task ID Automatically) <Using Static Stack> (vscr_tsk, ivscr_tsk)
	3.4.2 Delete Task (del_tsk)
	3.4.3 Initiate Task (act_tsk, iact_tsk)
	3.4.4 Cancel Task Initiation Request (can_act, ican_act)
	3.4.5 Start Task (Start Code Specified) (sta_tsk, ista_tsk)
	3.4.6 Exit Current Task, Exit and Delete Current Task (ext_tsk), (exd_tsk)
	3.4.7 Terminate Task (ter_tsk)
	3.4.8 Change Task Priority (chg_pri, ichg_pri)
	3.4.9 Refer to Task Priority (get_pri, iget_pri)
	3.4.10 Refer to Task State (ref_tsk, iref_tsk)
	3.4.11 Refer to Task State (Simple Version) (ref_tst, iref_tst)
	3.4.12 Change Task Execution Mode (vchg_tmd)

	3.5 Task Synchronization
	3.5.1 Sleep Task (slp_tsk, tslp_tsk)
	3.5.2 Wakeup Task (wup_tsk, iwup_tsk)
	3.5.3 Cancel Wakeup Task (can_wup, ican_wup)
	3.5.4 Release WAITING State Forcibly (rel_wai, irel_wai)
	3.5.5 Suspend Task (sus_tsk, isus_tsk)
	3.5.6 Resume Task Force, Task to Resume (rsm_tsk, irsm_tsk, frsm_tsk, ifrsm_tsk)
	3.5.7 Delay Task (dly_tsk)
	3.5.8 Set Task Event Flag (vset_tfl, ivset_tfl)
	3.5.9 Clear Task Event Flag (vclr_tfl, ivclr_tfl)
	3.5.10 Wait Task Event Flag (vwai_tfl, vpol_tfl, vtwai_tfl)

	3.6 Task Exception Processing Functions
	3.6.1 Define Task Exception Processing Routine (def_tex, idef_tex)
	3.6.2 Request Task Exception Processing (ras_tex, iras_tex)
	3.6.3 Disable Task Exception Processing (dis_tex)
	3.6.4 Enable Task Exception Processing (ena_tex)
	3.6.5 Refer To Task Exception Processing Disabled State (sns_tex)
	3.6.6 Refer to Task Exception Processing State (ref_tex, iref_tex)

	3.7 Synchronization and Communication (Semaphore)
	3.7.1 Create Semaphore(cre_sem, icre_sem,) (acre_sem, iacre_sem: Assign Semaphore ID Automatically)
	3.7.2 Delete Semaphore (del_sem)
	3.7.3 Returns Semaphore Resource (sig_sem, isig_sem)
	3.7.4 Wait on Semaphore (wai_sem, pol_sem, ipol_sem, twai_sem)
	3.7.5 Refer to Semaphore State (ref_sem, iref_sem)

	3.8 Synchronization and Communication (Event Flag)
	3.8.1 Create Event Flag (cre_flg, icre_flg) (acre_flg, iacre_flg: Assign Event Flag ID Automatically)
	3.8.2 Delete Event Flag (del_flg)
	3.8.3 Set Event Flag (set_flg, iset_flg)
	3.8.4 Clear Event Flag (clr_flg, iclr_flg)
	3.8.5 Wait for Event Flag Setting (wai_flg, pol_flg, ipol_flg, twai_flg)
	3.8.6 Refer to Event Flag State (ref_flg, iref_flg)

	3.9 Synchronization and Communication (Data Queue)
	3.9.1 Create Data Queue (cre_dtq, icre_dtq,) (acre_dtq, iacre_dtq: Assign Data Queue ID Automatically)
	3.9.2 Delete Data Queue (del_dtq)
	3.9.3 Send Data to Data Queue (snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq, ifsnd_dtq)
	3.9.4 Receive Data from Data Queue (rcv_dtq, prcv_dtq, trcv_dtq)
	3.9.5 Refer to Data Queue State (ref_dtq, iref_dtq)

	3.10 Synchronization and Communication (Mailbox)
	3.10.1 Create Mailbox (cre_mbx, icre_mbx) (acre_mbx, iacre_mbx: Assign Mailbox ID Automatically)
	3.10.2 Delete Mailbox (del_mbx)
	3.10.3 Send Message to Mailbox (snd_mbx, isnd_mbx)
	3.10.4 Receive Message from Mailbox (rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx)
	3.10.5 Refer to Mailbox State (ref_mbx, iref_mbx)

	3.11 Synchronization and Communication (Mutex)
	3.11.1 Create Mutex (cre_mtx) (acre_mtx: Assign Mutex ID Automatically)
	3.11.2 Delete Mutex (del_mtx)
	3.11.3 Lock Mutex (loc_mtx, ploc_mtx, tloc_mtx)
	3.11.4 Unlock Mutex (unl_mtx)
	3.11.5 Refer to Mutex State (ref_mtx)

	3.12 Extended Synchronization and Communication (Message Buffer)
	3.12.1 Create Message Buffer (cre_mbf, icre_mbf) (acre_mbf, iacre_mbf: Assign Message Buffer ID Automatically)
	3.12.2 Delete Message Buffer (del_mbf)
	3.12.3 Send Message to Message Buffer (snd_mbf, psnd_mbf, ipsnd_mbf, tsnd_mbf)
	3.12.4 Receive Message from Message Buffer (rcv_mbf, prcv_mbf, trcv_mbf)
	3.12.5 Refer to Message Buffer State (ref_mbf, iref_mbf)

	3.13 Memory Pool Management (Fixed-Size Memory Pool)
	3.13.1 Create Fixed-Size Memory Pool (cre_mpf, icre_mpf) (acre_mpf, iacre_mpf: Assign Memory Pool ID Automatically)
	3.13.2 Delete Fixed-Size Memory Pool (del_mpf)
	3.13.3 Get Fixed-Size Memory Block (get_mpf, pget_mpf, ipget_mpf, tget_mpf)
	3.13.4 Release Fixed-Size Memory Block (rel_mpf, irel_mpf)
	3.13.5 Refer to Fixed-Size Memory Pool State (ref_mpf, iref_mpf)

	3.14 Memory Pool Management (Variable-Size Memory Pool)
	3.14.1 Create Variable-Size Memory Pool (cre_mpl, icre_mpl) (acre_mpl, iacre_mpl: Assign Variable-Size Memory Pool ID Automatically)
	3.14.2 Delete Variable-Size Memory Pool (del_mpl)
	3.14.3 Get Variable-Size Memory Block (get_mpl, pget_mpl, ipget_mpl, tget_mpl)
	3.14.4 Release Variable-Size Memory Block (rel_mpl, irel_mpl)
	3.14.5 Refer to Variable-Size Memory Pool State (ref_mpl, iref_mpl)

	3.15 Time Management (System Clock)
	3.15.1 Set System Clock (set_tim, iset_tim)
	3.15.2 Get System Clock (get_tim, iget_tim)
	3.15.3 Supply Time Tick (isig_tim)

	3.16 Time Management (Cyclic Handler)
	3.16.1 Create Cyclic Handler (cre_cyc, icre_cyc) (acre_cyc, iacre_cyc: Assign Cyclic Handler ID Automatically)
	3.16.2 Delete Cyclic Handler (del_cyc)
	3.16.3 Start Cyclic Handler (sta_cyc, ista_cyc)
	3.16.4 Stop Cyclic Handler (stp_cyc, istp_cyc)
	3.16.5 Refer to Cyclic Handler State (ref_cyc, iref_cyc)

	3.17 Time Management (Alarm Handler)
	3.17.1 Create Alarm Handler (cre_alm, icre_alm) (acre_alm, iacre_alm: Assign Alarm Handler ID Automatically)
	3.17.2 Delete Alarm Handler (del_alm)
	3.17.3 Start Alarm Handler (sta_alm, ista_alm)
	3.17.4 Stop Alarm Handler (stp_alm, istp_alm)
	3.17.5 Refer to Alarm Handler State (ref_alm, iref_alm)

	3.18 Time Management (Overrun Handler)
	3.18.1 Define Overrun Handler (def_ovr)
	3.18.2 Start Overrun Handler (sta_ovr, ista_ovr)
	3.18.3 Stop Overrun Handler Operation (stp_ovr, istp_ovr)
	3.18.4 Refer to Overrun Handler State (ref_ovr, iref_ovr)

	3.19 System State Management
	3.19.1 Rotate Ready Queue (rot_rdq, irot_rdq)
	3.19.2 Get Task ID in RUNNING State (get_tid, iget_tid)
	3.19.3 Lock CPU (loc_cpu, iloc_cpu)
	3.19.4 Unlock CPU (unl_cpu, iunl_cpu)
	3.19.5 Disable Dispatch (dis_dsp)
	3.19.6 Enable Dispatch (ena_dsp)
	3.19.7 Refer to Context (sns_ctx)
	3.19.8 Refer to CPU-Locked State (sns_loc)
	3.19.9 Refer to Dispatch-disabled State (sns_dsp)
	3.19.10 Refer to Dispatch-Pended State (sns_dpn)
	3.19.11 Start Kernel (vsta_knl, ivsta_knl)
	3.19.12 System Down (vsys_dwn, ivsys_dwn)
	3.19.13 Acquire Trace Information (vget_trc, ivget_trc)
	3.19.14 Acquire Start of Interrupt Handler as Trace Information (ivbgn_int)
	3.19.15 Acquire End of Interrupt Handler as Trace Information (ivend_int)

	3.20 Interrupt Management
	3.20.1 Define Interrupt Handler (def_inh, idef_inh)
	3.20.2 Change Interrupt Mask (chg_ims, ichg_ims)
	3.20.3 Refer to Interrupt Mask (get_ims, iget_ims)

	3.21 Service Call Management
	3.21.1 Define Extended Service Call (def_svc, idef_svc)
	3.21.2 Call Service Call (cal_svc, ical_svc)

	3.22 System Configuration Management
	3.22.1 Define CPU Exception Handler (def_exc, idef_exc)
	3.22.2 Define CPU Exception (TRAPA Instruction Exception) Handler (vdef_trp, ivdef_trp)
	3.22.3 Refer to Configuration Information (ref_cfg, iref_cfg)
	3.22.4 Refer to Version Information (ref_ver, iref_ver)

	3.23 Cache Support Function (HI7700/4: for SH-3 and SH3-DSP)
	3.23.1 Initialize Cache (vini_cac, ivini_cac)
	3.23.2 Clear Cache (vclr_cac, ivclr_cac)
	3.23.3 Flush Cache (vfls_cac, ivfls_cac)
	3.23.4 Invalidate Cache (vinv_cac, ivinv_cac)

	3.24 Cache Support Function (HI7750/4: for SH-4)
	3.24.1 Initialize Cache (vini_cac, ivini_cac)
	3.24.2 Clear Operand Cache (vclr_cac, ivclr_cac)
	3.24.3 Flush Operand Cache (vfls_cac, ivfls_cac)
	3.24.4 Invalidate Operand Cache (vinv_cac, ivinv_cac)

	3.25 Cache Support Function (HI7700/4: for SH4AL-DSP without Extended Function, HI7750/4: for SH-4A without Extended Function)
	3.25.1 Initialize Cache (vini_cac, ivini_cac)
	3.25.2 Clear Instruction/Operand Cache (vclr_cac, ivclr_cac)
	3.25.3 Flush Operand Cache (vfls_cac, ivfls_cac)
	3.25.4 Invalidate Instruction/Operand Cache (vinv_cac, ivinv_cac)

	3.26 Cache Support Function (HI7700/4: for SH4AL-DSP with Extended Function, HI7750/4: for SH-4A with Extended Function)
	3.26.1 Initialize Cache (vini_cac, ivini_cac)
	3.26.2 Clear Instruction/Operand Cache (vclr_cac, ivclr_cac)
	3.26.3 Flush Operand Cache (vfls_cac, ivfls_cac)
	3.26.4 Invalidate Instruction/Operand Cache (vinv_cac, ivinv_cac)

	Section 4 Application Program Creation
	4.1 Header Files
	4.1.1 Header Files for C/C++ Language
	4.1.2 Header Files for Assembly Language

	4.2 Handling the CPU Resources
	4.2.1 SR Register
	4.2.2 Cache Lock Function (SH-3, SH3-DSP)
	4.2.3 VBR Register
	4.2.4 MMU (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A)
	4.2.5 Acceptance of NMI while SR.BL = 1 (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A)
	4.2.6 Nesting the Interrupts (SH-3, SH3-DSP, SH4AL-DSP, SH-4, SH-4A)
	4.2.7 32-Bit Address Extension Mode (SH-4A)
	4.2.8 TBR Register (SH-2A, SH2A-FPU)
	4.2.9 Register Banks (SH-2A, SH2A-FPU)

	4.3 Using SH2A-FPU, SH-4, or SH-4A
	4.4 System Reserve
	4.4.1 Reserved Name
	4.4.2 Reserved TRAP (Only in HI7000/4)

	4.5 Tasks
	4.6 Task Exception Processing Routines
	4.7 Extended Service Call Routines
	4.8 Interrupt Handlers
	4.8.1 Normal Interrupt Handler
	4.8.2 Direct Interrupt Handler (HI7000/4)

	4.9 CPU Exception Handler (Including TRAPA Instruction Exception)
	4.10 Time Event Handlers and Initialization Routine
	4.11 CPU Initialization Routines
	4.11.1 Creating CPU Initialization Routines in C language
	4.11.2 Defining CPU Initialization Routines in HI7000/4
	4.11.3 Defining CPU Initialization Routines in HI7700/4 and HI7750/4

	4.12 System Down Routines
	4.13 Using the DSP in Programs (for HI7000/4 and HI7700/4 only)
	4.13.1 Initializing DSR
	4.13.2 Using DSP in Handlers

	Section 5 Configuration
	5.1 Read First
	5.1.1 Whole Linkage and Separate Linkage

	5.2 Folder Structure
	5.2.1 hihead Folder
	5.2.2 hisys Folder
	5.2.3 hilib Folder
	5.2.4 knl Folder
	5.2.5 samples\shnnnn Folder

	5.3 Operating Procedure
	5.4 Configurator
	5.4.1 Overview
	5.4.2 Configurator Construction
	5.4.3 File Operation
	5.4.4 Configuration Files
	5.4.5 Separate Linkage
	5.4.6 Configurator Settings

	5.5 When Optimized Timer Driver is Used (HI7700/4)
	5.6 When DSP Standby Control Function is Used (HI7700/4)
	5.7 When Cache Support Function is Used on SH4AL-DSP (HI7700/4) or SH-4A (HI7750/4)
	5.8 HEW Workspace and Projects
	5.9 Kernel Libraries
	5.9.1 HI7000/4
	5.9.2 HI7700/4
	5.9.3 HI7750/4

	5.10 Section Configuration
	5.11 Settings Common to All Projects
	5.11.1 CPU Options for the Compiler and Assembler
	5.11.2 GBR Option of Compiler (Compiler Package V.7.1 or Later)
	5.11.3 PACK Option and #pragma pack of Compiler (Compiler Package V.8 or Later)
	5.11.4 Include Directory for Compiler and Assembler
	5.11.5 When SH2A-FPU or SH-4 or SH-4A is Used
	5.11.6 TBR Option of Compiler (Compiler Package V.9 or Later)

	5.12 Build for Whole Linkage (mix)
	5.12.1 Adding Files to a Project
	5.12.2 Defining Endian
	5.12.3 Setting Optimized Linkage Editor Options
	5.12.4 Executing a Build

	5.13 Build for Separate Linkage: Kernel Side (def)
	5.13.1 Adding Files to a Project
	5.13.2 Defining Endian (HI7700/4 and HI7750/4)
	5.13.3 Setting Optimized Linkage Editor Options
	5.13.4 Executing a Build

	5.14 Build at Separate Linkage: Kernel Environment Side (cfg)
	5.14.1 Adding Files to a Project
	5.14.2 Defining Endian (HI7700/4 and HI7750/4)
	5.14.3 Setting Optimized Linkage Editor Options
	5.14.4 Executing a Build

	5.15 Application Load Module Creation

	Appendix A Service Call List
	Appendix B Error List
	B.1 Service Call Error Code List
	B.2 Information during System Down
	B.3 Error during Compiling
	B.3.1 Error when Files are for a Different HI7000/4 Series
	B.3.2 Errors to Do with the Optimized Timer Driver (HI7700/4)
	B.3.3 Errors to Do with the DSP-Standby Control Function (HI7700/4)

	Appendix C Calculation of Work Area Size
	C.1 Work Areas
	C.2 Stack Types
	C.3 Stack Size Calculation Procedure
	C.4 Calculation of Stack Size for Each Function
	C.5 Stack Size Considering Programming Nesting
	C.6 Task Stacks
	C.6.1 Stack Size Used by Each Task
	C.6.2 Stack Area Acquisition

	C.7 Interrupt Handler Stacks
	C.7.1 Stack Size Used by an Interrupt Handler
	C.7.2 Stack Area Allocation

	C.8 Stack Size Used by a Time Event Handler and Timer Interrupt Routine
	C.9 Initialization Routine Stacks
	C.10 Timer Initialization Routine Stack

	Appendix D Timer Driver
	D.1 Overview
	D.2 Standard Timer Driver
	D.2.1 Installing the Time Management Function
	D.2.2 Sample Timer Driver

	Appendix E Optimized Timer Driver (HI7700/4)
	E.1 Overview
	E.2 Operation
	E.3 Applicable MCUs
	E.4 Hardware Initialization
	E.5 Differences with the Standard Timer Driver
	E.6 Ways to Include Optimized Timer Driver
	E.6.1 Overview
	E.6.2 Creating the kernel_def_opttmr_set.h Definition File
	E.6.3 Notes on the Configurator
	E.6.4 Modifying kernel_sys.h

	E.7 Kernel Libraries to be Used

	Appendix F DSP Standby Control (HI7700/4)
	F.1 Overview
	F.2 Applicable MCUs
	F.3 Module-Standby State when Initiating Programs
	F.4 Service Call for Changing the TA_COP0 Attribute (vchg_cop)
	F.5 Ways to Include DSP Standby Control Function
	F.5.1 Overview
	F.5.2 Creating the kernel_def_dspstby_set.h Definition File
	F.5.3 Modifying kernel_sys.h

	F.6 Kernel Libraries to be Used
	F.7 Notes

	Appendix G Notes on FPU of SH2A-FPU, SH-4, SH4A
	G.1 Task and Task Exception Processing Routine
	G.1.1 Initialization of FPSCR
	G.1.2 Attributes TA_COP1 and TA_COP2

	G.2 Non-Task Context (Normal Interrupt Handler, Direct Interrupt Handler, CPU Exception Handler, Time Event Handler, Initialization Routine)
	G.2.1 Overview
	G.2.2 SH-4, SH-4A
	G.2.3 SH2A-FPU

	G.3 Extended Service Call Routine
	G.3.1 Compiler Options
	G.3.2 Called from Task Context
	G.3.3 Called from Non-Task Context

	G.4 Information for Reference
	G.4.1 States on the Initiation of Tasks and Handlers
	G.4.2 FPSCR Structure
	G.4.3 Handling by the Compiler

	Appendix H New Functions of HI7000/4 V.2
	H.1 Support of SH-2A and SH2A-FPU
	H.1.1 FPU (SH2A-FPU) (V.2.00 Release 00)
	H.1.2 TBR Register (V.2.00 Release 00)
	H.1.3 Register Banks (V.2.00 Release 00, V.2.01 Release 00 and V.2.02 Release 00)

	H.2 Specifying Address of Task Stack, Fixed-Size Memory Pool, and Variable-Size Memory Pool (V.2.00 Release 00)
	H.3 Management Method of Fixed-Size Memory Pool (V.2.00 Release 00)
	H.4 Direct Interrupt Handler (V.2.00 Release 00 and V.2.02 Release 00)
	H.5 Macros for Calculating Size (V.2.00 Release 00)
	H.6 Extension of Maximum Vector Number (V.2.00 Release 00)
	H.7 ID Name (V.2.00 Release 00)
	H.8 Support of Little Endian in SH-2 (V.2.00 Release 01)
	H.9 Improvement of Variable-Size Memory Pool (V.2.01 Release 00)
	H.10 Initial Value of DSR (V.2.01 Release 00)
	H.11 Initial Value of SR in Task Exception Processing Routine (V.2.01 Release 00)
	H.12 Handling of Vector Numbers 16 to 31 (V.2.01 Release 00)
	H.13 Lifting of Restriction concerning Structure Alignment (V.2.01 Release 00)
	H.14 [Open the file used last time] Command for the Configurator (V.2.02 Release 00)

	Appendix I New Functions of HI7700/4 V.2
	I.1 Support of SH4AL-DSP (with Extended Function) (V.2.01 Release 00)
	I.2 Specifying Address of Task Stack, Fixed-Size Memory Pool, and Variable-Size Memory Pool (V.2.01 Release 00)
	I.3 Management Method of Fixed-Size Memory Pool (V.2.01 Release 00)
	I.4 Improvement of Variable-Size Memory Pool (V.2.01 Release 00)
	I.5 Macros for Calculating Size (V.2.01 Release 00)
	I.6 Initial Value of DSR (V.2.01 Release 00)
	I.7 Initial Value of SR in Task Exception Processing Routine (V.2.01 Release 00)
	I.8 Extension of Maximum Exception Code (CFG_MAXVCTNO) (V.2.01 Release 00)
	I.9 Handling of TRAPA #16 to #31 (V.2.01 Release 00)
	I.10 Release of Restriction concerning Structure Alignment (V.2.01 Release 00)
	I.11 ID Name (V.2.01 Release 00)
	I.12 [Open the file used last time] Command for the Configurator (V.2.02 Release 00)

	Appendix J New Functions of HI7750/4 V.2
	J.1 Support of SH-4A (with Extended Function) (V.2.01 Release 00)
	J.2 Specifying Address of Task Stack, Fixed-Size Memory Pool, and Variable-Size Memory Pool (V.2.01 Release 00)
	J.3 Management Method of Fixed-Size Memory Pool (V.2.01 Release 00)
	J.4 Improvement of Variable-Size Memory Pool (V.2.01 Release 00)
	J.5 Macros for Calculating Size (V.2.01 Release 00)
	J.6 Initial Value of SR in Task Exception Processing Routine (V.2.01 Release 00 or Later)
	J.7 Extension of Maximum Exception Code (CFG_MAXVCTNO) (V.2.01 Release 00)
	J.8 Handling of TRAPA #16 to #31 (V.2.01 Release 00)
	J.9 Release of Restriction concerning Structure Alignment (V.2.01 Release 00)
	J.10 ID Name (V.2.01 Release 00)
	J.11 [Open the file used last time] Command for the Configurator (V.2.02 Release 00)

	Colophon

